
1

CACTUS: Detecting and Resolving Conflicts in
Objective Functions

Subhajit Das and Alex Endert

Abstract—Machine learning (ML) models are constructed by expert ML practitioners using various coding languages, in which they tune
and select model hyperparameters and learning algorithms for a given problem domain. They also carefully design an objective function
or loss function (often with multiple objectives) that captures the desired output for a given ML task such as classification, regression, and
others. In multi-objective optimization, conflicting objectives and constraints is a major area of concern. In such problems, several
competing objectives are seen for which no single optimal solution is found that satisfies all desired objectives simultaneously. In the past,
visual analytic (VA) systems have allowed users to interactively construct objective functions for a classifier. In this paper, we extend this
line of work by prototyping a technique to visualize multi-objective objective functions either defined in a Jupyter notebook or defined
using an interactive visual interface to help users to detect and resolve conflicting objectives. Visualization of the objective function
enlightens potentially conflicting objectives that obstructs selecting correct solution(s) for the desired ML task or goal. We also present an
enumeration of potential conflicts in objective specification in multi-objective objective functions for classifier selection. Furthermore, we
demonstrate our approach in a VA system that helps users in specifying meaningful objective functions to a classifier by detecting and
resolving conflicting objectives. Through a within-subject quantitative and qualitative user study, we present results showing that our
technique helps users interactively specify meaningful objective functions by resolving potential conflicts for a classification task.

Index Terms—Objective functions, Conflict resolution, Classification, Machine Learning, Human-in-the-loop

F

1 INTRODUCTION

T RADITIONALLY machine learning (ML) experts construct
models by writing code for finding the right combination

of hyperparameters and learning algorithms, and specifying an
appropriate objective function (also called loss/cost functions) to
the modeling task. In the past, researchers in visual analytics (VA)
have investigated making ML model construction interactive, which
means developing visual interfaces that allow users to construct
ML models by interacting with graphical widgets or data marks
[1], [2], [3], [4], [5]. Recently, Das et al. introduced a VA system,
QUESTO [6], that facilitates interactive creation of objective
functions to solve a classification task utilising an Auto-ML
system. While their approach helped users to interactively explore
and express a wide array of objectives to an objective function, the
authors discussed potential conflicts that may occur in interactive
specification of objectives as a limitation to QUESTO’s workflow.

Interactive specification of objectives and constraints may
result in objective functions with conflicting objectives [7], [8].
Conflicting objectives may cause construction of inefficient
objective functions that may confuse the underlying algorithm
(e.g., an Auto-ML model solver) due to unclear user goals. For
example, in a classification task, a user may expect to see similar
data items in the same class label; at the same time they may also
expect that the global accuracy of the model is high for every class.
The model being trained to support the users request to place
similar data items in the same label category, may not perform
equally well for all class labels, thus dropping the global accuracy
of the model. In the past conflicts in objective specification in
multi-objective objective functions was addressed using trade-off
analysis [8], [9], [10], [11]. While useful, to our knowledge there

• Subhajit Das and Alex Endert are with Georgia Institute of Technology.
E-mail: das, endert@gatech.edu

Fig. 1. CACTUS workflow for resolving conflicts in objective functions.

is no other work in VA that have looked at detecting and resolving
conflicts in user-specified objectives to build classifiers.

In this paper, we extend research on interactive objective
functions by helping users detect conflicts in objective functions,
and further interactively resolving these conflicts to specify a more
meaningful objective function to model selection systems (e.g.
Auto-ML). Grounded on extensive literature search, we enumerated
a list of potential conflicts between various objectives in interactive
objective functions explained later in the paper. Furthermore,
we present a VA tool that facilitates: (1) Visualization of a
multi-objective objective function that is defined using a Python
code (e.g, defined in a Jupyter notebook), or a visual interface such
as QUESTO [6], (2) Highlighting conflicts between interactively
specified objectives, (3) Helping users to resolve these conflicts to
improve their objective functions, and (4) Train multiple classifiers
incrementally (over multiple iterations) to perform trade-off
analysis of objectives in multi-objective objective function. As

2

objective functions drive all ML algorithms, we consider visualizing
objective functions may help users (e.g., novice ML users, ML
experts who may use GUI to debug models, etc.) to understand their
specifications to the underlying models. Defining a meaningful
and correct objective functions (free of conflicts) is very important
to ensure models that are sampled from Auto-ML systems perform
as per user expectations. With the proposed approach, in a Jupyter
notebook one can define an objective function and then use our
technique to visualize, test, and interactively adjust objectives to
explore numerous model alternatives for their analytical ML task.

We prototyped CACTUS, a conflict resolution and trade-off
analysis system for user specification of objectives. CACTUS in-
gests an objective function (defined in Python or Jupyter notebook)
and then visualises it to show its objectives and respective weights.
It visually explains the objectives that are closely satisfied by
the selected classifier and the ones that failed to be satisfied (see
Figure 1). Furthermore, it visualises conflicts between objectives,
allowing users to incrementally improve the function by making
adjustments interactively. When objective functions are adjusted
interactively, users can re-train models, see a change in the models’
performance and continue exploring the space of multiple variants
of objective functions. Furthermore, visualising objective functions
and the trained models’ performance metric (per objective) can
empower users to probe models in relation to how well they satisfy
their goals. For example, users can probe if similar data items are
predicted in the same class, or strong representative (candidate)
data subsets are predicted with higher probabilities.

In addition, we quantitatively evaluated CACTUS to test if
it helped users to find and resolve conflicts. We also present
qualitative feedback from the participants that enlightens the
strengths and weaknesses in CACTUS, its’ potential usability
issues, and limitations that needs further research. Our study
showed that: (1) Participants found CACTUS intuitive, expressive
and very effective in showing (and helping to resolve) conflicts
between objectives. (2) CACTUS helped participants ideate on
multiple versions of objective functions and in the process resolve
conflicts in objectives. Our contributions are:
• An enumeration of potential conflicts in objective specification

in multi-objective objective functions to construct classifiers.
• A VA system CACTUS that visualises conflicts in objective

functions and supports interactive resolution of them.
• A within-subject quantitative and qualitative user study

validating that our technique helps users construct meaningful
objective functions by resolving conflicts between objectives.

2 RELATED WORK

Interactive classification in VA: In machine learning, classifica-
tion is a process to predict a class label of a data item (e.g., rows in a
table) given its features in the data (e.g., columns in a table). Many
VA systems made this process of classifier construction interactive
[12], [13], [14], [15], [16], [17], [18]. In some cases, this interactive
classifier construction process also supported data labeling [19],
hyperparameter tuning [20], latent space visualization of complex
models such as deep neural networks [21], etc. For example, a sys-
tem called ModelTracker visualized model performance (e.g., val-
idation set’s accuracy) to debug and improve models by facilitating
direct data inspection by ML practitioners [1]. These surveys further
showed visualization systems that allowed construction of clas-
sifiers [22], [23]. People also researched interactive construction of
multiple models e.g., the system Prospect allowed ML practitioners

to interactively revise data properties. These models helped users
understand the relationship between data features and the class label
[24]. While these systems helped users (from novices to experts
in ML) interactively build classifiers, in this paper we help people
create many variants of objective functions by resolving conflicts
between objectives as users intend to construct optimal classifiers.

User preferences in objective functions: We researched the
literature to understand user specifications that goes into the con-
struction of objective functions in ML [25], [26], [27], [28] and how
these functions are visualized or made interactive in the past. User
goals are often personalised and domain specific [29], [30]; users’
may require custom-designed metrics to select models, as opposed
to utilize known metrics such as ‘accuracy’ or ‘recall’ [31]. Often
users may teach machines to show example data instances of a spe-
cific class label to help models learn how to discriminate between
classes [25]. For instance, similarity between data instances or a sub-
segment of the data is utilized to express user expectation from clas-
sifiers [32]. Similarly, in the system Flock users specified features in
the data instances that rendered them similar to be in a specific class
label [33]. People in the past have visualized solutions recovered us-
ing multi-objective objective functions using charts such as RadViz,
bubble chart, parallel coordinate plots etc. [34], [35], [36]. A 2D-
polar coordinate plot was used to help users see trade-offs between
objectives in this work [37]. Others have analysed variety in pareto-
optimal solutions in multi-objective optimization functions [38],
[39]. Das et al. prototyped QUESTO, allowing users to interactively
create objective functions to select optimal classifiers trained on
tabular data [6]. In this paper we seek to extend research on inter-
active objective functions by showing users, conflicts in objectives
as opposed to allowing interactive creation of objective functions.

Conflicts in multi-objective objective functions: Real-world
ML applications (e.g., finance, transportation, medical diagnosis,
etc.) require addressing multiple user goals that may often conflict
with one another [40]. Often these goals are specified to the system
using a multi-objective objective function representation [41], [42].
In such objective functions, it is considered as ‘k’ (number of objec-
tives) increases, the power of finding dominant solutions diminishes
because satisfying each of the objectives becomes mathematically
intractable [43]. Purshouse et al. confirmed that multiple objectives
may be conflicted with one another; resolving conflict may show
better performance in one objective than others [44]. Zhang et al.
defined conflict analysis as a method to find conflicts, reason about
it, and then resolve it [9]. Bell et al. further described conflicts
in decision making and summarized quantitative approaches to
address them in optimization problems [10]. Reed et al. explored
scatterplot charts to visually inspect the set of conflicting objectives
to solve a ground water optimization problem [11] (e.g., discovered
a conflict between cost and uncertainty). There is a recent interest
in multi-objective machine learning optimization functions, which
tackles conflicting user objectives. For example, in model selection,
there is the conflict between model complexity and model accuracy
(more complex, more accurate the model) [8], [45]. Multi-task
learning is another avenue where multiple tasks are solved jointly
using a multi-objective optimization paradigm; however these tasks
often conflict with one another that needs a trade-off analysis [7].
A common solution is to utilize a proxy objective to minimise a
weighted linear combination (per task) of loss. Sener et al. showed
a solution to the conflicting objectives by solving for pareto optimal
solutions [7]. While previous work in conflict resolution used
elementary visualisations, none of these ventures allowed users

3

to detect and resolve conflicts in objective functions for classifier
construction using Auto-ML, a problem that we solve in this paper.

Fig. 2. Conflict matrix, shows conflict possibilities between objectives.
The objective function is a means to maximize (or minimize)

something. This something is a numeric value. In the real world it
could be the cost of a project, a production quantity, profit value,
or even materials saved from a streamlined process

3 TYPES OF CONFLICTS IN OBJECTIVE FUNCTIONS

Objective functions are used to minimize or maximise a user-
defined goal expressed numerically. In this work, we consider
objective functions that allow selection of optimal classifiers from
an Auto-ML system (e.g., Hyperopt [46], Optuna [47]). In this, the
goal is to maximize an objective score, which is a weighted linear
combination of many objectives. An example of a user-defined
objective can be that the model: (1) correctly predicts a specified
number of critical data instances or (2) correctly predicts a certain
class label or (3) predicts user-defined similar data instances in the
same class group. When a model is trained the objective function
is utilized to compute the score based on the predictions made
by the model. Here the objective functions described are not the
objective functions that drive the decision making processes in ML
algorithms such as SVM, Logistic Regression, or Neural Networks.
This renders our approach model-agnostic, empowering end users
to test plethora of objectives as they find optimal models.

In creating these objective functions, users may inadvertently
define conflicting objectives. For example, users may specify a sub-
set data instances that should be predicted in the same class, while
also specifying a subset of these instances as good representative
examples of two different classes. In order to understand what con-
flicts between user-specified objectives are, we adopt the objective
categories as defined by Das et al. [6]. There were four categories:
(1) Instance-based, (2) Feature-based, (3) Train-objectives, and
(4) Test-objectives. Within each of these categories there are a set
of objectives such as Candidate, Similarity, Ignore, etc. under the
Instance-based category. Explaining each of these categories is
beyond the scope of this paper. We categorized these conflicts as:

1) Conflicts based on choices: Conflicts can be categorized
based on users’ subjective choices, presuming these choices
follow best ML practices (e.g., guarding against overfitting,
constructing classifiers that represent every class precisely).
Logic based conflicts: These are conflicts that are logically
incorrect but does not violate best ML practices, which we
term as logic-based-conflicts. For example, a user may specify
a set of data items to be part of the objective Similarity (where
these data items are expected to be in the same class label say
A), while specifying a subset of these data items as Candidate
(an objective specifying data items that are good representative

examples of a class label) of a different class say B. These
conflicts are logically incorrect but do not violate best ML
practices. Refer Figure 2 to see every conflict combinations.
ML practices-based conflicts: There can be conflicts which
are not logically incorrect but may be violating best ML
practices. For example, building a classifier using only Train-
objectives, and not Test-objectives as a constraint, may produce
overfitted models that are not generalizable to unseen data.
Similarly for an imbalanced data if only an Accuracy objective
is specified as opposed to F1-Score or Precision. This may
trigger the model solver to select classifiers that performs
poorly on minority class labels. In this paper we are not
addressing conflicts that may occur due to violating best ML
practices. We realized that handling these type of conflicts re-
quires lot of work, which might be a research project in itself.

2) Conflicts based on time of occurrence: Logic-based-
conflicts can be further categorized based on when they occur
in the modeling pipeline.
Before model conflicts: Some conflicts can be computed
before even training a model, while a few other conflicts can
be only ascertained after a model is constructed. The first kind,
which we term as Before-model-conflicts, can be automatically
computed before a ML model is constructed based on the
objectives in the interactive objective function. For example, a
user has specified a set of data items - I that should be placed
in the same class label, say Dog, while also specified a subset
of I, say J data items as Candidate objective for the class label
Cat. Here Candidate objective means data items that are strong
representative of a specified class label. So the conflict is that
the same data items are specified as examples of two different
label categories Dog and Cat. Similarly another example of
a Before-model-conflict is between the objectives Critical and
Ignore. Critical represents a set of data items that are very
important for the user, and thus the user expects the model to
predict them correctly, and Ignore represents a set of data items
that the user deems unimportant, or noise or garbage from the
training set. A user may specify a set of data items as Critical,
while in a future iteration of the model construction may
specify a subset of Critical data items as Ignore. Such kinds
of conflicts can be computed before a model is constructed.
After model conflicts: In addition to the above, there may
be other types of conflicts that are only noticed when a model
is constructed or many iterations of model construction have
occurred which we term as After-model-conflicts. From the
literature we know that in a multi-objective objective function,
all objectives cannot be attained [8]. In such scenarios, a
set of pareto-optimal solutions are presented to the user in
which only a subset of objectives are attained in each of
the pareto-optimal solutions [37]. Analysing model log data
over multiple modeling iterations, the system can infer which
objectives are repeatedly unattained, or which set of objectives
cannot be solved together (at the same time). In such cases,
these objectives are in conflict with one another, meaning that
the specification of one, blocks attainment of the other or vice
versa in the objective function [9]. For example, the system
may infer that a highly weighted Train-Accuracy objective is
prohibiting the model solver to find a model that also attains
the Similarity objective successfully. These conflicts can only
be inferred when the model is constructed or when multiple
iterations of model construction has occurred.

4

Fig. 3. The CACTUS system - A. Data subsets per objective. B. Model spark bars. C. Control bar. D. Gray bars show recommended objective weights.
Blue sliders allow users to control weights per objective. E. Variance bars. F. Conflict view. G. Conflict box. H. Tooltip from a whisker box. I. Top 4
highly variant attributes. J. Objective function gallery (can be placed to the left or right). K. Jupyter notebook.

We scope our conflict detection and resolution method to
handle conflicts that are logically incorrect (from the Conflicts
based on choices) and of the type Before-model-conflict (from the
Conflicts based on time of occurrence), but do not violate best ML
practices. As the after-model-conflict investigation needed more
intensive engineering effort, we plan to address it in the future.

4 TASKS AND DESIGN GUIDELINES

Grounded on previous work and our experience with interactive
objective functions, we formulated the following analytical tasks:
AT1: Import and visualize objective functions from a Jupyter
notebook (NB). Also, allow users to switch back and forth between
multiple objective functions that they import in their analysis.
AT2: Inspect conflicts between objectives to address problems with
an objective function. Compare severity of conflicts between any
objectives in a function, and between multiple objective functions.
AT3: Resolve conflicts by re-assigning conflicted data items to a
chosen objective. Control implication of any conflict by adjusting
the respective objectives’ weights. Export conflicted data items’ ID
or the entire objective function to NB to redefine objectives.
AT4: Incrementally construct many ML models and inspect model
trade-offs between multiple model alternatives, through the interac-
tive creation of objective functions. These functions can be variants
of the function that they import, created in the process of conflict
resolution, re-assigning weights or re-writing the function in NB.
We set forth the following design guidelines for CACTUS:
DG1: CACTUS should visualize an objective function and
assigned weights to its objectives. Its interaction should allow
users to create variants of the function. [AT1]
DG2: CACTUS should show performance of a selected model
on each of the specified objectives for every iteration of model
construction. Users should be able to visually perceive how the
model satisfied the specified objectives. [AT4]
DG3: CACTUS should visually show conflicts between objectives.
Users should be able to visually understand the conflicts and seek
details on each conflict (e.g., distribution of the conflicted data,
see variance of attributes). [AT2]
DG4: CACTUS should help users to interactively resolve conflicts.
Furthermore, it should provide affordances to either perform
conflict resolution in the interface or allow users to export conflicts
to NB (to redefine objectives). [AT3]

5 CACTUS: SYSTEM DESIGN

CACTUS’s frontend was deployed with webGL based PhaserJS
gaming library. The backend was a NodeJS server running python
code. To interface with Jupyter notebook, we utilised the nbconvert
package [48] in python. Auto-ML model solvers were simulated
using Optuna [47] package in python. The views of CACTUS
are: (1) Conflict view, (2) Model spark bars, (3) Venn diagram,
(4) Feature plots, (5) Objective function gallery.

5.1 User Interface
Conflict view: This view shows conflicts using a table
representation, where every column shows an objective from the
loaded objective function (see Figure 3-F, DG1). The second
row (with the blue numbered circles, see Figure 3-A) represent
subset data instances that were specified as examples as part of
the respective objective. Every row in the table encodes a conflict
(DG3) between a pair of objectives (e.g, Candidate, and Ignore
in second row). Conflict pairs are emphasized by a highlighted
rectangular box (also called Conflict box, see Figure 3-G and
Figure 4-H), where 4 most highly variant attributes are vertically
ordered (see the blue gradient text on the left in Figure 3-I). Aligned
with each of these attributes, a violin plot, with a whisker box plot is
rendered (Figure 3-G and Figure 5). Here the violin plots show the
distribution of the data in relation to that attribute, and the whisker
plot shows the shape of the data instances that are part of the
objective. Further, users can hover their mouse on the whisker box
to see detailed information about the shape of the data (Figure 3-H,
DG3). Thus, using this visual technique, users can compare the
conflicted data instance’s shape across two objectives that are in
conflict with one another. The Conflict box, also shows a horizontal
bar chart of Variance bars, where it shows the variance of the data
in the two objectives (shown in orange) and the variance of the
conflicted data items (shown in blue) in relation to top 3 highly
variant attributes (see Figure 4-D and Figure 3-E). Using this view,
users can understand how similar or different are the conflicted data
in comparison to the data items that are part of the two objectives.
Model spark bars and weightings: On top of the Conflict view,
CACTUS also renders horizontal sliders (shown as blue bars in
Figure 3-D) that allow users to interactively specify weights to
the objectives (DG1, DG2). In addition, users can refer to system
recommended weights, if they are unsure about the weights for each
objective (shown as gray bars in Figure 3-D). CACTUS allows users

5

to incrementally train models while they adjust the objective func-
tion (e.g., by resolving conflicts or updating objective weights). Per
iteration when a new model is trained, its validation accuracy is plot-
ted as a series of vertical bars, called Model spark bars, scaled be-
tween 0 to 100 as seen in Figure 3-B. These bars allow users to com-
pare performance of the model with respect to specific objectives.

Fig. 4. A. Objective function gallery. B. Model spark bars. C. Gray bars
show recommended weights. Blue bars are sliders to allow users to
specify weights. D. Variance bars. E. Feature plots.F. Context menu. G.
Venn diagram view. H. Conflict box.

Venn diagram view: As users explore the conflicts, they can click
on the Conflict box between an objective pair, to trigger the system
to open the bottom tray. It reveals a venn diagram showing the
overlap between the pair of objectives. The size of the circles reflect
how many examples comprise each objective, while the overlap of
the circle encodes the conflicted data items (see Figure 4-G) that are
shared by both objectives. Furthermore, users can hover over the
overlapped region to see the distribution of the data on the Feature
plots (Figure 4-E) and also on the Variance bars (see Figure 4-D
and Figure 5). Based on their exploration, they may decide to
resolve the conflicts (DG4) by either: (1) Moving the points to the
left or to the right objective, (2) Exporting the conflicted data to the
Jupyter notebook, and (3) Completely removing the conflicts from
the objective function using the context menu seen in Figure 4-F.
Resolving any conflict, removes the visual representation of it, i.e.,
a single row from the Conflict view is removed from the display.
Feature plots: This view plots a set of k attributes with highest
variance as small multiples of scatterplots (Figure 4-E). Each of
these charts are plotted with the target variable (or dependent vari-
able) on the y axis. The design of this view is intended to show users
the shape of the data in an objective or in a conflict in relation to the
input data (DG4). This view is linked with the Venn diagram view.
Objective function gallery: As users resolve conflicts or change
weights of objectives, a new version of the objective function is
stored in the memory. Users can access the history of objective
function creation through this view, where each state of the
objective function is shown using a thumbnail preview (see
Figure 3-J and Figure 4-A, can be placed to the left or the right
of the Conflict view). The preview also shows the trained models’
validation accuracy score scaled between 0 to 100 (DG2). This view
also supports users to go back to a previous state of the function.

5.2 Conflict Detection and Resolution Method
Next we explain how CACTUS detects conflicts:
Conflict parser: A user may write an objective function, O
in Python/Jupyter notebook comprising of a set of k objectives
ω1,ω2,ω3,,ωk. Furthermore, each of them can be specified

with a set of k scores (s1,s2,s3,,sk). Thus, O can be represented
as a weighted linear combination of these objectives as seen here,
O = s1 ∗ω1 + s2 ∗ω2 + s3 ∗ω3 + s4 ∗ω4 + s5 ∗ω5. The objectives
checks, if a set of user-defined data instances are correctly
predicted by a classifier. Thus objective ωi is represented as a set
of training data instance T ID’s as t1, t2, t3....tl . However, in the
case of Candidate objective, they may also be stored as ID’s for a
specific class label L1, L2,...Lb, (b class labels). The conflict parser
module of CACTUS checks for any overlap between all the paired
combination of objectives from O. For example, it utilizes Ti and
Tj between the objectives ωi,ω j, using the function FN(ωi,ω j)
to find conflicted data ID’s Tc. Finally, this module generates a
hashmap object F , where keys are hashed to represent the objective
pairs (ωi− to−ω j), and the values are the conflicted data ID’s Tc.
Data distribution and variance: Conflicts are visualized using
the F object (generated by the conflict parser module). Sequentially,
the system tracks the pair of objectives Pi that are in conflict using
the hash-keys (fk) of the object F . Next, it retrieves the set of data
ID’s Ti that are specified as examples as part of the objective pairs
Pi. It also recovers Tj from F that represents the conflicted data
items. Using Ti, the system first retrieves the top 3 (this number
can be adjusted) attributes with highest variance in this set. Next it
draws the violin plot V and the whisker plot W . While V shows the
distribution of the full training set, the whisker plot W , shows the
distribution of the examples that are part of the respective objectives
in Pi. Similarly, the Variance bars, are rendered to visualise the
variance for the data ID’s in Pi, and the conflicted data items Tj.
The venn diagrams are also drawn using the object F .
Model solver: Users can also utilize any Auto-ML model solver
M to sample n classifiers C (e.g., can be adjusted n = 200) in
Python or in a Jupyter notebook. For the current prototype we tested
with Hyperopt [46], and Optuna [47] but can be replaced by Auto-
SKLearn [49], or Auto-Pytorch [50] if required. In this pipeline, M
expects an objective function O, to score each of the classifiers ci in
C. The highest scoring (H) classifier ck is selected and its’ overall
performance (e.g., validation accuracy score), and per objective
performance is visualized in CACTUS. While the model construc-
tion part is handled by Python or the Jupyter notebook, CACTUS
only ingests the objective function O, and visualizes conflicts.
Weight recommendation: The set of weights S = s1,s2,s1....sk
in O can be specified from the Jupyter notebook. These can also
be interactively adjusted from the interface of CACTUS using
the sliders (Figure 4-C). To further guide users, our approach
also recommends weights S′ (between 0 and 1, for each objective
ωi). In the initial iterations, the recommendations are randomly
initialized, however, as users incrementally construct multiple
versions of objective functions (O = O1,O2,O3, ...O f) and models
(M = M1,M2,M3, ...M f), these weights are recommended based
on the probabilistic likelihood of the weight settings that found
success in: (1) Maximising the overall model accuracy, and
(2) Maximising the objective score for which the weight is
recommended. We followed the Bayesian approach [49] in
modeling the probabilistic likelihood of the weight settings.

6 USAGE SCENARIO

Here we explain a scenario where an analyst constructs a classifier
that performs optimally on domain-specific objectives. Consider
James is an analyst in the public policy department of US
Government seeking to construct a classifier to predict Cancer
mortality rate. He has access to a Cancer mortality dataset (per US

6

Fig. 5. Violin plots and whisker boxes show how conflicted data items
are similar or different to the pair of objectives.

County) [51] containing 3048 records/rows; each row represents
a US county. It contains 34 independent variables such as incident-
rate, median-age, avg-household-size, birth-rate, and others. James
wants to predict the Death-Rate-Per-County, annotated by the
labels: negligible, low, medium, high, and very-high. James uses
Jupyter notebook (NB) to explore and analyse the data (Figure 3-K).
To classify the data, James trains a gradient boosted classifier in
NB and observes a relatively poor accuracy of only 72%, and 65%
on the training and validation set respectively. Motivated to select
a preferred optimal model for this problem, he decides to use
Optuna - an Auto-ML solver [47], and writes a custom objective
function for this package to find optimal classifiers in NB. James
re-trains a new classifier by feeding this objective function (with
objectives Candidate, Ignore, and Critical) in Optuna, and notices
that the training accuracy improved to 86%, while the validation
set improved only marginally (69% accuracy). In their objective
function specification, James filters the data with less than value
50000 of the attribute med-income and higher than 18% of the
attribute poverty-percent to be classified in the same class label
of medium, as he thinks these data samples should be similar.
Furthermore, he selects a set of counties whose birth-rate and
median-age attribute values range between 6 to 15% and 35 to 50
respectively, as critical counties that should be correctly classified.

Motivated to explore different variations of this objective
function and to resolve any conflicts between the specified
objectives, James imports it in CACTUS (Figure 3). James sees the
conflicts in the Conflict view, and looks at the left end of each row
to find the most severe conflict (Figure 3-I). He notices that there
are 74 data samples that are in conflict between the objectives
Ignore and Candidate. He also inspects the conflicted data items’
position with respect to the attribute values shown in the violin
plots and whisker boxes (Figure 5). James notices that the examples
shown as part of the objectives have similar shape and thus likely
confusing the model solver. He clicks on its Conflict box to reveal
the Venn diagram view (see Figure 4-G) showing the conflicted
data samples. Hovering over each of the venn diagram’s arc sectors,
James inspects the data samples on the Feature plots that shows the
relationship of top 2 highly variant attributes, plotted on the x-axis
with the target variable on the y-axis. This view answers if these
samples are similar or different from the two objectives (as seen
in the red dots in Figure 4-E). James realizes that a condition to
specify a set of data samples with attribute values of med-income
lesser than 50000, might have caused this conflict. He exports
this conflict to NB to further re-define the objectives Ignore, and
Candidate. After correction, James adds two more objective subset
examples for: (1) Similarity, and (2) Critical in NB. James trains a

new model, but finds that many important counties are incorrectly
classified by this model. He re-defines the Similarity and the
Candidate objective and retrains a set of new models in NB.

Upon importing the new function to CACTUS, James observes
that one of the most severe conflict is between Critical and
Similarity. To remove this conflict, he filters the conflicted data
samples using the data ID’s retrieved from CACTUS in NB. He
finds similar data samples (using cosine distance) to the conflicted
data samples from the training set for the Critical objective. James
replaces the similar data samples in the Critical objective to resolve
this conflict. Next, he trains a new classifier, loads it in CACTUS
to see that the Validation-set accuracy improved to 94.58%. Happy
with the analysis results, James exports the best model and the
final objective function to share with their collaborators.

7 EVALUATION

We conducted a within-subject user study of CACTUS to validate
the effectiveness of our technique. Considering the lack of any
other visual interface similar to CACTUS, we designed our study
to address the following research questions. As an alternative, the
command line interface was not considered as we were investigating
a joint ‘code’ and ‘no-code’ approach as used in CACTUS.
RQ1: Does CACTUS make it easy to precisely find conflicts

between objectives in objective functions for classifiers?
RQ2: Does CACTUS help users in correctly resolving conflicts?
RQ3: Does CACTUS support users to compare objective functions

and understand trade-offs between them?
We recruited 14 participants (9 Male, 5 Female), aged between

22 − 36 (M = 26.06 [22.41,29.71]), by inviting participants
through our university mailing lists. Our requirement was that they
should know how to read/write basic python code, with elementary
understanding of classifier construction and exploratory data analy-
sis. Our participants were a mix of Masters and PhD students from
computer science, analytics, geography, and urban planning. They
had basic familiarity with data analysis (M = 5.26 [3.73,6.79], on a
Likert scale rating of 1−7, higher is better), and basic ML expertise
(M = 4.85 [3.63,6.07]). The study was conducted remotely using
Bluejeans [52] in light of the on-going COVID-19 pandemic. It
lasted 60-70 minutes and at the end of a successful session we
compensated participants with a $10 Amazon gift card. The system
was deployed on our computer, which we shared with participants
using a publicly accessible URL retrieved using NGROK [53]

7.1 Study Design and Datasets
We began the study with a live demo, showing participants how
CACTUS works and how its visualizations can be interacted with.
We also demonstrated how the system integrated with a Jupyter
notebook environment to seek objective functions (pre-defined by
writing Python scripts), and data instances. During this session,
we encouraged participants to ask as many questions they wanted
to clarify any confusion with respect to the workflow or the system
interface. Next, when we felt confident that participants were ready
for the tasks, we proceeded to the experimental sessions. To answer
the previously mentioned RQ’s we considered these dependent vari-
ables: (1) Task completion times to detect/find and resolve conflicts,
(2) Conflict resolution success rate, i.e, the number of conflicts the
participants correctly resolved out of the total conflicts for all the
given objective functions (between 0 to 1), (3) Model Accuracies,
accuracy score of models per iteration of objective function spec-
ification (scaled between 0 to 1), (4) Number of iterations as users

7

incrementally created objective functions by resolving conflicts, and
(5) User preference ratings that includes Ease of use, Intuitiveness
of the GUI, Steep learning curve, and other relevant system
interactions (all of the scores were normalized between 0 to 1).

For the practice session, we provided a dataset of 5000 IMDB
movie records [54]. The data had attributes such as gross-revenue,
budget, cast-facebook-likes, number-user-votes, etc. It was a multi-
class classification task to predict the rating of a movie between low,
moderate, high, and very-high. For the first experimental session,
we provided San Francisco city’s employment dataset [55] contain-
ing 25000 records of job types for the quantitative evaluation. Each
row in the data contained information about a job’s remuneration
information containing attributes such as dental-benefits, annual-
salary, health-benefits, retirement-compensation, etc. The task
was to predict the job’s department which had 5 classes e.g.,
Cultural/Recreation, Public Service, Healthcare, Administration,
and Other. For the next experimental session, we provided the
Cancer mortality dataset (per US County) [51] to predict Death-
Rate-Per-County. The class labels were Very high, High, Moderate,
Low, and Negligible. The dataset contained 3048 rows, each row
representing the death rate of a US county and was annotated
with one of the five categories of class labels. Furthermore, it
had 34 attributes (1 categorical variable) including incident-rate,
median-age, avg-household-size, birth-rate, and others.

7.2 Tasks and Procedure
In the practice session we provided users with a list of 3
pre-defined objective functions (written in a Jupyter notebook) on
the IMDB movies dataset [54]. We asked them to load them in
CACTUS and visually explore the conflicts in various objectives.
Next after 15 minutes of practice we asked them questions such as:
(1) Which objective pair has the highest conflict? , (2) Name the
top 2 highly variant attributes for the conflict between Ignore and
Similarity, (3) Resolve conflicts between Similarity and Candidate.
For session A (low-level analytic tasks 1-6) we asked participants
to load three objective functions (pre-defined by us in a Jupyter
notebook) on the San Francisco’s salary dataset [55] and perform
these tasks (randomized to remove learning effects):
Task 1: Report number of data items that are in conflict between

Ignore and Candidate from the second objective function.
Task 2: Name the top 2 attributes with high variance between the

objectives Similarity and Candidate.
Task 3: Resolve the first and the last conflict from the third objec-

tive function. Train (and export) a new model after you resolve
each conflict and then compare the model performance.

Task 4: Out of the three objective functions, find the function that
has the highest conflict between any of the objectives.

Task 5: Train three models by changing weights of any of the
objectives for each of the three objective functions. Which
objective function found the better performing model?

Task 6: Export any conflict from the top 2 best objective function
from the set of saved functions to Jupyter notebook.

Task 7: In session B (high-level exploratory task), we asked
participants to freely use CACTUS and improve model
performance in 8 mins. using a pre-defined objective function
and a baseline classifier on the Cancer mortality dataset [51].

7.3 Data Collection
We captured video and audio of participants screen. We saved
log data containing selected models’ learning algorithms, and

hyperparameters, predicted class labels, interacted objectives
and conflicts. When participants completed all the tasks for both
sessions, we asked them to fill a NASA-TLX form [56], and a post-
study questionnaire with a set of Likert scale questions (in a 7 point
scale). In the end we conducted a semi-structured interview asking
open-ended questions about the workflow, system usability, and
interaction design of the interface. Throughout the tasks we encour-
aged participants to think aloud as they interacted with CACTUS.

7.4 Quantitative Analysis
We broadly measured if using CACTUS: (1) users can detect
conflict easily and successfully, (2) users can resolve conflicts with
precision, and (3) users can compare objective functions over time
and learn trade-offs between them. Thus, we validated CACTUS’s
success based on the following quantitative metrics:
Task completion times: We measured task completion
time when users were asked to: (1) Report a conflict
between a pair of objectives (M = 2.43mins. [1.41,3.45]),
(2) Report highest conflict between three pre-defined objective
functions (M = 5.12mins. [2.81,7.43]). Next, we measured
task completion time when participants: (1) Resolved conflicts
between a pair of given objectives in an objective function
(M = 3.03mins. [2.59,3.47]), and (2) Resolved conflicts across the
three objective functions (M = 5.02mins. [4.00,6.04]).
Correctness in conflict resolution: In addition, 13 out of
14 participants successfully found the right conflicts between
objectives. We observed 92.86% success rate among participants
to find conflicts in an objective function. We also observed that
every participant but two was able to successfully resolve conflicts
(85.17% success rate). The two failed to complete the task due
to a bug (latency in recording conflict changes by the user) in the
system, that we plan to fix in future.
Incremental comparison of objective functions: We
investigated log data to assess if participants were able to compare
objective functions and learn trade-offs between objectives as they
trained multiple classifiers. In doing so, we observed that on an
average, participants iterated 10.23 times (M = 10.23 [6.69,13.77])
to improve the given classifiers’ baseline validation accuracy score
of 78.24% on the Cancer mortality dataset [51]. 11 out of the 14 par-
ticipants selected an objective function (to export, as their final se-
lection) from a previous iteration in time. Furthermore, we observed
a set of approaches to train new models: (1) Train a new classifier by
changing weights only (2/14 participants), (2) Train a new classifier
by resolving conflicts only (4/14 participants), and (3) a hybrid
approach of the two which was the most popular (8/14 participants).
We found that 88.34% of the participants were successful in improv-
ing the baseline classifiers’ performance using these approaches.
User preference ratings: We analysed Likert scale user preference
ratings (on a scale of 1 to 7, higher is better) after users interacted
with CACTUS. Participants expressed that CACTUS was Easy
to use (M = 6.04 [5.85,6.23]), and its interface was Intuitive
(M = 5.51 [5.05,5.96]). The majority also confirmed that the
interface did not have a steep learning curve for new users
(M = 2.45 [1.25,3.65]), lower is better in this case). Most of the
participants felt that they were successful in resolving conflicts
(M = 5.11 [4.95,5.27]), and they were able to incrementally
improve models’ validation accuracy (M = 5.23 [5.01,5.45]).
Furthermore, the participants confirmed that the Conflict view was
expressive to not only help them find conflicts but also know which
conflicts were more severe from the set (M = 6.03 [5.54,6.52]).

8

Fig. 6. Results of Likert scale ratings and NASA TL-X scores for CACTUS.

Likewise the Venn diagram view was found to be very useful to re-
solve conflicts (M = 5.32 [5.11,5.53]). However, many participants
found the Feature plots could have been more useful, if they knew
the data better (M = 3.11 [1.55,4.67]). Next, from the NASA-TLX
survey we observed that on average every participants’ mental
workload, and frustration towards the tasks were on the lower side
(M = 2.11 [1.01,3.21] out of a 10 point scale; lower is better).

7.5 Qualitative Analysis
Expressive visualisations: Most of the participants liked the visual
representations used in CACTUS to represent conflict. In addition,
they liked the current interaction design to help them resolve con-
flicts. P10 noted, “Easy to use, UI was straight forward. Resolving
conflicts was easy. I liked that I could do things without much in-
terruption.”. However, some participants expected to adjust Python
code from CACTUS without transitioning to the Jupyter notebook.
Incremental objective function exploration: We observed that
participants enjoyed the workflow of incrementally changing
objective functions to train better performing models. They either
changed weights or they resolved most severe conflicts to create
a variety of objective functions. P04 expressed “I liked the plot on
the top that shows you the history of the model performance, it was
very helpful for me to keep track of the model improvement.”. A few
participants gamified the model training process, e.g., P03 said “I
liked the highlighted bar charts showing the attributes with the high-
est variance. That helped me tweak my weights as well as resolve
conflicts, to beat the machine to find a better [performing] model”.
Glean insights about the process: A few participants expressed
the desire to learn a bit more about the process, in addition to be
able to interactively train models. For example, P02 shared “At
times it was hard to know how to change the weights and whether
to move left or right when trying to resolve conflicts. I expect to
see more visual cues on how to improve models’ accuracy.”. In
future, we plan to make this incremental modeling process more
transparent using GUI elements within the interface.
Conflict resolution strategy: Broadly, we understood two main
strategies that the participants used to resolve conflicts. The first
approach was to compare the shape of the data in conflict, to the
data in the two objectives by observing the Feature plots. Based
on the shape resemblance they moved the conflicted data instances
to one of the objectives. The other approach was to look at the
Variance bars to find resemblance of the conflicted data to one of
the objectives. When participants were not sure, how to resolve the
conflict, they preferred to export it to Jupyter notebook to provide
better examples by writing Python code. P08 said, “My first step
would be to find which variables are useful. I would then, look at the

bar charts to see if the conflicts were closer to one of the objectives.
If not, I would look at the scatterplot and make judgements by
approximating the average location of each of the three groups.”

8 DISCUSSION AND LIMITATIONS

Collaborative objective functions: In ML teams, objective
functions are often designed by multiple members of the team
to solve the same problem. In situations like this CACTUS can
helps visually compare multiple versions of objective functions
from different team mates, and then explore the space of possible
objective functions and conflicts that may arise from each. That
may open a new research area as an extension to our current work,
in which users may like to resolve conflicts by collaboration across
different geo-locations, or from different devices.
Gamification of modeling: We observed a few participants
gamified the process of model construction, by testing various
weight settings of objectives, resolving conflicts, or specifying
new objectives. Their goal was to beat the previous models’
performance score and also to perform better than the model
constructed using system recommended weights. Many participants
elicited there is a lot of value in this, as not only it helps them
ideate and explore faster, but also makes the process of finding
a suitable model more fun. In future, we see lot of potential in
supporting the interface with features that further encourage and
guide users in this process of gamified model creation.
Limitations in conflict resolution: From the study, we realized
there are several aspects of CACTUS that can be improved. For
example, we found the current interface showing the incremental
view of objective functions (Model spark bars and the Objective
function gallery) is often difficult to track because it only supports
sequential record. Every change in one parameter leads to a model
retraining, and saves a new copy of the function. This may be
difficult to track when users have iterated many times. We plan to
research further to find potentially better design choices in-terms of
visual design and interaction. Another issue, we realise is that data
exploration is critical to resolve conflicts and design good objective
functions. A few participants in the study, who were less versed
with the data, felt uninformed to change the weights and whether
to move left or right when resolving conflicts. In CACTUS, we
focused on conflict resolution and objective function comparison,
while separated the task of data exploration in Jupyter notebook.
Scalable conflicts: The current prototype’s implementation is
designed to be model agnostic, meaning it can work with classifica-
tion, or regression models (supervised ML). It can also work with
sequence data such as text, time-series and image data. Currently,
the interactions are tested on medium sized data sets (i.e., with data
samples in the range of 100k). Though we tested with multiple
conflicts per row, we discarded the approach, as it may lead to inef-
fective selection of conflict intersections in the venn diagram view.

9 CONCLUSION

We presented a novel VA system CACTUS, that interactively
helps in detecting and resolving conflicts among objectives in a
multi-objective objective function. In this paper, we also discussed
a list of various types of conflicts that may occur when users
interactively specify objective functions to Auto-ML model solvers
to classify tabular data. With a quantitative and qualitative user
study we show that our technique helps users to interactively detect
and resolve conflicts between objectives, and incrementally train
ML classifiers in tandem with a Jupyter notebook environment.

9

REFERENCES

[1] S. Amershi, M. Chickering, S. Drucker, B. Lee, P. Simard, and J. Suh,
“Modeltracker: Redesigning performance analysis tools for machine
learning,” in Proceedings of the Conference on Human Factors in
Computing Systems (CHI 2015), April 2015.

[2] B. C. Kwon, B. Eysenbach, J. Verma, K. Ng, C. D. Filippi, W. F.
Stewart, and A. Perer, “Clustervision: Visual supervision of unsupervised
clustering,” IEEE Transactions on Visualization and Computer Graphics,
vol. 24, no. 1, pp. 142–151, Jan 2018.

[3] S. Das, D. Cashman, R. Chang, and A. Endert, “Beames: Interactive
multimodel steering, selection, and inspection for regression tasks,” IEEE
Computer Graphics and Applications, vol. 39, no. 5, pp. 20–32, Sep.
2019.

[4] S. L’Yi, B. Ko, D. Shin, Y.-J. Cho, J. Lee, B. Kim, and J. Seo, “Xclusim: a
visual analytics tool for interactively comparing multiple clustering results
of bioinformatics data,” BMC Bioinformatics, vol. 16, no. 11, p. S5, Aug
2015. [Online]. Available: https://doi.org/10.1186/1471-2105-16-S11-S5

[5] H. Piringer, W. Berger, and J. Krasser, “Hypermoval: Interactive visual
validation of regression models for real-time simulation,” in Proceedings
of the 12th Eurographics / IEEE - VGTC Conference on Visualization,
ser. EuroVis’10. Chichester, UK: The Eurographs Association &
John Wiley & Sons, Ltd., 2010, pp. 983–992. [Online]. Available:
http://dx.doi.org/10.1111/j.1467-8659.2009.01684.x

[6] S. Das, S. Xu, M. Gleicher, R. Chang, and A. Endert, “Questo: Interactive
construction of objective functions for classification tasks,” Computer
Graphics Forum, vol. 39, no. 3, pp. 153–165, 2020. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13970

[7] O. Sener and V. Koltun, “Multi-task learning as multi-objective
optimization,” in Advances in Neural Information Processing
Systems 31, S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, Eds. Curran Associates, Inc.,
2018, pp. 527–538. [Online]. Available: http://papers.nips.cc/paper/
7334-multi-task-learning-as-multi-objective-optimization.pdf

[8] Y. Jin, Multi-Objective Machine Learning. Springer, 2006.
[9] L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik, “Efficient

conflict driven learning in a boolean satisfiability solver,” in Proceedings
of the 2001 IEEE/ACM International Conference on Computer-Aided
Design, ser. ICCAD ’01. IEEE Press, 2001, p. 279–285.

[10] . R. H. Bell DE, Keeney RL, Conflicting Objectives in Decisions. John
Wiley and Sons, 1977.

[11] P. M. Reed and B. S. Minsker, “Striking the balance: Long-term
groundwater monitoring design for conflicting objectives,” Journal of
Water Resources Planning and Management, vol. 130, no. 2, pp. 140–149,
2004.

[12] H. Li, S. Fang, S. Mukhopadhyay, A. J. Saykin, and L. Shen, “Interactive
machine learning by visualization: A small data solution,” in 2018 IEEE
International Conference on Big Data (Big Data), Dec 2018, pp. 3513–
3521.

[13] B. Alsallakh, A. Jourabloo, M. Ye, X. Liu, and L. Ren, “Do convolutional
neural networks learn class hierarchy?” CoRR, vol. abs/1710.06501, 2017.
[Online]. Available: http://arxiv.org/abs/1710.06501

[14] M. Liu, S. Liu, H. Su, K. Cao, and J. Zhu, “Analyzing the noise robustness
of deep neural networks,” 2018 IEEE Conference on Visual Analytics
Science and Technology (VAST), pp. 60–71, 2018.

[15] N. Pezzotti, T. Höllt, J. Van Gemert, B. P. F. Lelieveldt, E. Eisemann,
and A. Vilanova, “Deepeyes: Progressive visual analytics for designing
deep neural networks,” IEEE Transactions on Visualization and Computer
Graphics, vol. 24, no. 1, pp. 98–108, Jan 2018.

[16] O. Biran and K. McKeown, “Human-centric justification of machine
learning predictions,” in Proceedings of the 26th International Joint
Conference on Artificial Intelligence, ser. IJCAI’17. AAAI Press, 2017,
pp. 1461–1467. [Online]. Available: http://dl.acm.org/citation.cfm?id=
3172077.3172090

[17] K. Patel, N. Bancroft, S. M. Drucker, J. Fogarty, A. J. Ko, and
J. Landay, “Gestalt: Integrated support for implementation and analysis
in machine learning,” in Proceedings of the 23Nd Annual ACM
Symposium on User Interface Software and Technology, ser. UIST ’10.
New York, NY, USA: ACM, 2010, pp. 37–46. [Online]. Available:
http://doi.acm.org/10.1145/1866029.1866038

[18] S. Das and A. Endert, “Legion: Visually compare modeling techniques
for regression,” in 2020 Visualization in Data Science (VDS), 2020, pp.
12–21.

[19] Y. Sun, E. Lank, and M. Terry, “Label-and-learn: Visualizing the
likelihood of machine learning classifier’s success during data labeling,”
in Proceedings of the 22Nd International Conference on Intelligent User
Interfaces, ser. IUI ’17. New York, NY, USA: ACM, 2017, pp. 523–534.
[Online]. Available: http://doi.acm.org/10.1145/3025171.3025208

[20] T. Li and T. Zajonc, “Hypertuner : Visual analytics for hyperparameter
tuning by professionals,” 2018.

[21] M. Kahng, P. Y. Andrews, A. Kalro, and D. H. Chau, “Activis: Visual
exploration of industry-scale deep neural network models,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 24, pp. 88–97,
2017.

[22] A. Chatzimparmpas, R. M. Martins, I. Jusufi, K. Kucher, F. Rossi,
and A. Kerren, “The state of the art in enhancing trust in machine
learning models with the use of visualizations,” Computer Graphics
Forum, vol. 39, no. 3, pp. 713–756, 2020. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14034

[23] J. Yuan, C. Chen, W. Yang, M. Liu, J. Xia, and S. Liu, “A
survey of visual analytics techniques for machine learning,” Comput.
Vis. Media, vol. 7, no. 1, pp. 3–36, 2021. [Online]. Available:
https://doi.org/10.1007/s41095-020-0191-7

[24] K. Patel, S. M. Drucker, J. Fogarty, A. Kapoor, and D. S. Tan, “Using
multiple models to understand data,” in Proceedings of the Twenty-Second
International Joint Conference on Artificial Intelligence - Volume Volume
Two, ser. IJCAI’11. AAAI Press, 2011, pp. 1723–1728. [Online].
Available: http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-289

[25] X. Z., A. Singla, S. Zilles, and A. N. Rafferty, “An overview of machine
teaching,” CoRR, vol. abs/1801.05927, 2018.

[26] Q. Yang, J. Suh, N. Chen, and G. Ramos, “Grounding interactive machine
learning tool design in how non-experts actually build models.” ACM,
June 2018.

[27] M. Chen and H. Wang, “How personal experience and technical knowl-
edge affect using conversational agents,” in Proceedings of the 23rd
International Conference on Intelligent User Interfaces Companion, ser.
IUI ’18 Companion. New York, NY, USA: ACM, 2018, pp. 53:1–53:2.

[28] H. S. M. Cramer, V. Evers, V. S., M. W., and B. J. Wielinga, “Awareness,
training and trust in interaction with adaptive spam filters,” in Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, ser.
CHI ’09. New York, NY, USA: ACM, 2009, pp. 909–912.

[29] J. Escudero, E. Ifeachor, J. P. Zajicek, C. Green, J. Shearer, and S. Pearson,
for the Alzheimer’s Disease Neuroimaging Initiative, “Machine learning-
based method for personalized and cost-effective detection of alzheimer’s
disease,” IEEE Transactions on Biomedical Engineering, vol. 60, no. 1,
pp. 164–168, Jan 2013.

[30] O. Rudovic, J. Lee, M. Dai, B. Schuller, and R. W. Picard, “Personalized
machine learning for robot perception of affect and engagement in autism
therapy,” Science Robotics, vol. 3, no. 19, 2018.

[31] A. Kapoor, B. Lee, D. Tan, and E. Horvitz, “Interactive optimization for
steering machine classification,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, ser. CHI ’10. New York, NY,
USA: ACM, 2010, pp. 1343–1352.

[32] O. Tamuz, C. Liu, S. Belongie, O. Shamir, and A. T. Kalai, “Adaptively
learning the crowd kernel,” in Proceedings of the 28th International
Conference on International Conference on Machine Learning, ser.
ICML’11. USA: Omnipress, 2011, pp. 673–680.

[33] J. Cheng and M. S. Bernstein, “Flock: Hybrid crowd-machine learning
classifiers,” in Proceedings of the 18th ACM Conference on Computer
Supported Cooperative Work & Social Computing, ser. CSCW ’15.
New York, NY, USA: ACM, 2015, pp. 600–611. [Online]. Available:
http://doi.acm.org/10.1145/2675133.2675214

[34] Z. He and G. G. Yen, “Comparison of visualization approaches in
many-objective optimization,” in 2017 IEEE Congress on Evolutionary
Computation (CEC), June 2017, pp. 357–363.

[35] R. Sahu and A. K. Chaturvedi, “Many-objective comparison of twelve
grid scheduling heuristics,” 2011.

[36] D. J. Walker, R. Everson, and J. E. Fieldsend, “Visualizing mutually
nondominating solution sets in many-objective optimization,” Trans. Evol.
Comp, vol. 17, no. 2, pp. 165–184, Apr. 2013.

[37] Z. He and G. G. Yen, “Visualization and performance metric in many-
objective optimization,” IEEE Transactions on Evolutionary Computation,
vol. 20, no. 3, pp. 386–402, June 2016.

[38] L. Miqing, Z. Liangli, and X. Y., “How to read many-objective solution
sets in parallel coordinates,” CoRR, vol. abs/1705.00368, 2017.

[39] M. Li, S. Yang, and X. Liu, “Diversity comparison of pareto front
approximations in many-objective optimization,” IEEE Transactions on
Cybernetics, vol. 44, no. 12, pp. 2568–2584, Dec 2014.

[40] P. Lindroth, M. Patriksson, and A.-B. Strömberg, “Approximating the
pareto optimal set using a reduced set of objective functions,” European
Journal of Operational Research, vol. 207, no. 3, pp. 1519 – 1534,
2010. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0377221710004868

https://doi.org/10.1186/1471-2105-16-S11-S5
http://dx.doi.org/10.1111/j.1467-8659.2009.01684.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.13970
http://papers.nips.cc/paper/7334-multi-task-learning-as-multi-objective-optimization.pdf
http://papers.nips.cc/paper/7334-multi-task-learning-as-multi-objective-optimization.pdf
http://arxiv.org/abs/1710.06501
http://dl.acm.org/citation.cfm?id=3172077.3172090
http://dl.acm.org/citation.cfm?id=3172077.3172090
http://doi.acm.org/10.1145/1866029.1866038
http://doi.acm.org/10.1145/3025171.3025208
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14034
https://doi.org/10.1007/s41095-020-0191-7
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-289
http://doi.acm.org/10.1145/2675133.2675214
http://www.sciencedirect.com/science/article/pii/S0377221710004868
http://www.sciencedirect.com/science/article/pii/S0377221710004868

10

[41] C. A. C. Coello, G. B. Lamont, and D. A. V. Veldhuizen, Evolutionary Al-
gorithms for Solving Multi-Objective Problems (Genetic and Evolutionary
Computation). Berlin, Heidelberg: Springer-Verlag, 2006.

[42] C. J. Petrie, T. A. Webster, and M. R. Cutkosky, “Using pareto optimality
to coordinate distributed agents,” Artificial Intelligence for Engineering
Design, Analysis and Manufacturing, vol. 9, no. 4, p. 269–281, 1995.

[43] K. Deb and D. K. Saxena, “On finding pareto-optimal solutions through
dimensionality reduction for certain large-dimensional multi-objective
optimization problems.”

[44] R. C. Purshouse and P. J. Fleming, “On the evolutionary optimization
of many conflicting objectives,” IEEE Transactions on Evolutionary
Computation, vol. 11, no. 6, pp. 770–784, 2007.

[45] Y. Jin and B. Sendhoff, “Pareto-based multiobjective machine learning:
An overview and case studies,” IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews), vol. 38, no. 3, pp.
397–415, 2008.

[46] B. Komer, J. Bergstra, and C. Eliasmith, “Hyperopt-sklearn: automatic
hyperparameter configuration for scikit-learn,” in ICML workshop on
AutoML, 2014.

[47] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-
generation hyperparameter optimization framework,” in Proceedings of the
25rd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2019.

[48] Nbconvert, “Nbconvert python package.” [Online]. Available: https:
//nbconvert.readthedocs.io/en/latest/api/preprocessors.html?highlight=
ExecutePreprocessor#nbconvert.preprocessors.ExecutePreprocessor

[49] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and
F. Hutter, “Efficient and robust automated machine learning,” in Advances
in Neural Information Processing Systems 28, C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett, Eds. Curran Associates, Inc.,
2015, pp. 2962–2970. [Online]. Available: http://papers.nips.cc/paper/
5872-efficient-and-robust-automated-machine-learning.pdf

[50] L. Zimmer, M. Lindauer, and F. Hutter, “Auto-pytorch tabular:
Multi-fidelity metalearning for efficient and robust autodl,” CoRR, vol.
abs/2006.13799, 2020. [Online]. Available: https://arxiv.org/abs/2006.
13799

[51] “Cancer mortality rates for us counties,” https://data.world/nrippner/
ols-regression-challenge, accessed: 2020-16-07.

[52] “Bluejeans software,” https://www.bluejeans.com/, accessed: 2020-10-10.
[53] “Ngrok service,” https://ngrok.com/, accessed: 2020-10-10.
[54] “Imdb movies data,” ftp://ftp.fu-berlin.de/pub/misc/movies/database/,

accessed: 2019-09-15.
[55] T. S. F. C. Office, “Employee compensation data,” https://data.sfgov.org/

City-Management-and-Ethics/Employee-Compensation/88g8-5mnd, ac-
cessed : March 15, 2019.

[56] S. G. H. and L. E. S., “Development of nasa-tlx (task load index): Results
of empirical and theoretical research,” in Human Mental Workload, ser.
Advances in Psychology, P. A. H. and N. M., Eds. North-Holland, 1988,
vol. 52, pp. 139 – 183.

https://nbconvert.readthedocs.io/en/latest/api/preprocessors.html?highlight=ExecutePreprocessor#nbconvert.preprocessors.ExecutePreprocessor
https://nbconvert.readthedocs.io/en/latest/api/preprocessors.html?highlight=ExecutePreprocessor#nbconvert.preprocessors.ExecutePreprocessor
https://nbconvert.readthedocs.io/en/latest/api/preprocessors.html?highlight=ExecutePreprocessor#nbconvert.preprocessors.ExecutePreprocessor
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf
https://arxiv.org/abs/2006.13799
https://arxiv.org/abs/2006.13799
https://data.world/nrippner/ols-regression-challenge
https://data.world/nrippner/ols-regression-challenge
https://www.bluejeans.com/
https://ngrok.com/
ftp://ftp.fu-berlin.de/pub/misc/movies/database/
https://data.sfgov.org/City-Management-and-Ethics/Employee-Compensation/88g8-5mnd
https://data.sfgov.org/City-Management-and-Ethics/Employee-Compensation/88g8-5mnd

	Introduction
	Related Work
	Types of conflicts in objective functions
	Tasks and Design Guidelines
	CACTUS: System Design
	User Interface
	Conflict Detection and Resolution Method

	Usage Scenario
	Evaluation
	Study Design and Datasets
	Tasks and Procedure
	Data Collection
	Quantitative Analysis
	Qualitative Analysis

	Discussion and Limitations
	Conclusion
	References

