
Graph Comparison for Causal Discovery

Joseph Cottam, Maria Glenski, Zhuanyi Huang Shaw,
Ryan Rabello, Austin Golding, Svitlana Volkova, Dustin Arendt

Broad Comparison Focused Comparison
Data
Tables

Causal
Discovery

Causal 
Model

Graphs & Configurations

Blacklists
Whitelists

Parameters

Blacklists
Whitelists

Parameters

Graphs Graphs

ConstructsFeature Selection
Constructs

Feature Selection

Fig. 1: Graph comparison views and abstract workflow. Data tables are processed through causal discovery algorithms. Focused
and broad comparison tools guide algorithm selection, parameters tuning and building black/white lists. Tasks motivate changing
between parts of the process. Ultimately an analysts creates a causal model through exploration in a Jupyter notebook.

Abstract—Reasoning about cause and effect is one of the frontiers for modern machine learning. Many causality techniques reason
over a “causal graph” provided as input to the problem. When a causal graph cannot be produced from human expertise, “causal
discovery” algorithms can be used to generate one from data. Unfortunately, causal discovery algorithms vary wildly in their results due
to unrealistic data and modeling assumptions, so the results still need to be manually validated and adjusted. This paper presents
a graph comparison tool designed to help analysts curate causal discovery results. This tool facilitates feedback loops whereby an
analyst compares proposed graphs from multiple algorithms (or ensembles) and then uses insights from the comparison to refine
parameters and inputs to the algorithms. We illustrate different types of comparisons and show how the interplay of causal discovery
and graph comparison improves causal discovery.

1 INTRODUCTION

Data analysts are called on more and more to explain why something
happens. Explaining why requires going beyond descriptive methods
of what has occurred, and looking to underlying mechanisms. This
deeper exploration is the realm of causal reasoning [35, 36]. Creating
causal models is an interactive process, relying on human intuition
and experience to review algorithmic results. Therefore, it is an ideal
human-machine teaming opportunity.

Causal discovery algorithms attempt to surface causal relationships
from data, these relationships are typically represented as a graph. How-
ever, as many datasets are not collected with causal discovery in mind,
most causal discovery algorithms can (at best) provide only candidate
causal relationships. Furthermore, different algorithms may propose
conflicting causal structures based on (1) different assumptions about
the underlying data, (2) inherent limitations in the datasets (e.g., not
fully observing processes), and (3) randomness used in the algorithms.
As a result, it is incumbent on the analyst to select appropriate algo-
rithms and interpret results.

Visual analytics can help with causal discovery in particular by facil-
itating graph comparison, thereby helping an analyst curate algorithm
outputs, combine results, and iterate on algorithm inputs (such as rela-
tionship black/white-listing or feature selection). The starting point for
this workflow is a set of candidate graphs produced by causal discovery
algorithms. The analyst must then select between different causal dis-

• All authors are with Pacific Northwest National Lab.
• Emails are first.last@pnnl.gov

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

covery algorithms (or ensembles of them) and possibly revise the inputs
to those algorithms based on their observations and tacit knowledge.
Ultimately, the analyst is trying to find a causal model that captures
the variation of the data and conforms to known truths (or construct
new models based on compelling evidence).

This paper makes two contributions: (1) We argue that the “graph
comparison” task is a necessary part of the causal discovery workflow,
e.g., during validation, and furthermore, that causal discovery is a
relevant but under-explored application domain in visual analytics. (2)
We present a graph comparison tool for causal discovery workflows.
While the tool builds on existing graph visualization techniques, we
assert that the workflows it supports are novel and effective in the
context of causal discovery.

1.1 Motivation
Causal reasoning is essential to advancing modeling beyond simply
describing data. More and more problems require models for predict-
ing future behavior, prescribing ways to change systems, or imagining
alternatives. These latter problems require a model of causal relation-
ships [35, 36]. Algorithmic causal discovery of these relationships
is fundamentally limited in many cases, even under ideal circum-
stances [18, 20]. In practice, it is common for different algorithms
to produce incompatible outputs given the same input.

Though fundamentally a machine-learning problem, it is naive to
apply causal discovery in a completely automated fashion; models are
evaluated not just on their ability to capture variation in the data but also
on the feasibility of their structure. Much of the relevant knowledge is
not exposed in a computationally accessible form. It is held in research
papers and the tacit knowledge of researchers. Qualitative evaluation
is an essential part of identifying good causal models. Despite its
fundamental issues, causal discovery is employed in fields such as
economics and epidemiology to build rich models from observational



Tool Comments
GraphViz [8] Single-graphs, not interactive
Cytoscape [44] Single-graphs, assumes biology
Cytoscape plugins [13, 28, 31] Limited graph sizes, few graphs
Phylogenetic trees [33, 40] Assumes a tree structure
Haase Diagrams [27] Assumes time, focus on tracing
Animated Geometry [9–11] Focus on tracing
Regression Explorer [6] Focus on statistical evidence
DiffAni [41] Assumes time

Table 1: Tools for graph comparison. Using these tools requires leaving
the notebook environment, and thus add workflow complexity.

and interventional data [16]. Observing analysts using causal discovery
toolboxes (such as pcalg [23]), we noticed several issues that visual
analytics can help address.

In a typical workflow, analysts create models with several different
algorithms. Each algorithm produces a causal graph that represents
cause and effect relationships as links between nodes that represent
variables (cause → effect). (In this paper, all ‘causal models’ are
‘causal graphs’, and the terms are used interchangeably). Analysts
would render these causal graphs in a generic tool (e.g., as PDFs us-
ing graphviz [8]) and perform a side-by-side comparison between the
artifacts to identify similarities and differences. This side-by-side com-
parison stood out as a potential area for improvement as it was manual,
slow, and error-prone. Analysts often lost the context for their compari-
son as they moved between tools and had to write short programs to
filter/align graphs as their analyses progressed.

In a survey of existing graph comparison tools (summarized in
Table 1), we found that most were focused on specific domains [13,
14, 19, 28, 31, 33, 40, 44], assumed restrictions on the graphs that were
not generally true [11, 14], or did not integrate well with the desired
workflows [8, 44]. These observations led us to build a new graph
comparison-focused tool that can be embedded directly in Jupyter
notebooks [25, 38], which allows analysts to conduct their work in a
single workspace.

2 RELATED WORK

Graph Comparison In general aligning two graphs is in NP [42].
However, features of the causal discovery domain makes it more
tractable. For example, meaningful node labels are often present in
causal networks, provided by the input data table’s column labels. This
makes set-based aggregate comparison metrics, such as the Jaccard
index [15, 29], easy to apply and interpret.

There are many biologically focused tools in graph analysis. Cy-
toscape is a popular application/plugin-framework in the area [44] with
plugins specifically for graph comparison (e.g., [13,28,31]). These tools
tend to use traditional node-link layouts, and influenced our “focused
comparison” view. Phylogentic tree comparison has also benefited
from working with simpler graph structures [33, 40]. Though our ap-
plications do not contend with the issues of scale, the focus+context,
highlighting differences (with or without a canonical reference), and
filtering techniques remain applicable.

Dynamic Graph Visualization Graph comparison is related to
dynamic graph visualization—in dynamic graph visualization the user
compares graphs from different times to understand what has changed.
Thus, many lessons learned from dynamic graph visualization can be
applied to graph comparison, especially if comparing multiple graphs
arranged in some reasonable sequence. The taxonomy presented by
Beck et al. [2] explores the breadth of the design space in dynamic
graph visualization, revealing many options for graph comparison.
From this taxonomy, juxtaposed, superimposed, and integrated tech-
niques appear in various aspects of graph comparison tool.

TimeArcTrees [14] was influential in the “broad comparison” view
of our tool. TimeArcTrees have two main parts: a hierarchy view and a
graph evolution view. The graph evolution shows time as a series of
graph snapshots along X axis where the nodes of each snapshot are
shown as a single row on the Y axis. Nodes have a fixed Y position

across all time slices. The layout is reminiscent of a grid where the
nodes are the rows and time points are the columns. Edges are shown
as arrows that link between nodes. Edges that go up the Y axis are on
the left side of the node icons, while edges that go down the Y axis are
on the right. The order of the Y axis is derived from the node hierarchy,
with edge crossings minimized within a hierarchy level. This layout
makes collapsing elements of the hierarchy as simple as reducing all
nodes in a span of the Y axis in to a single summary node. Adjacent
temporal slices can be combined in a similar way along the X axis. Our
application does not include temporal ordering (for the horizontal order)
or hierarchical elements (for the vertical order), limiting the ability of
the tool to summarize. However, the organization principles are still
useful and our externally created ensembles are conceptually similar to
TimeArcTree summaries. Many techniques in the “focused comparison”
tool are related to those found in GraphDiaries [1]. In particular, modi-
fying edge and node weights on graph diagrams that share a layout to
highlight similarities/differences can be found in GraphDiaries (among
other places). The task of this paper can mapped into the taxonomy of
GraphDiaries, though it is difficult to directly apply because the analog
of ‘time’ is discrete and branching. Furthermore, we avoid animation
in most cases because there are fewer graphs to represent.

Causal Visualization Prior work on causal discovery has focused
more on the mechanics of causal discovery, e.g., how the underlying
observational data and causal relationships are related. For example,
the Visual Causality Analyst tool (VCA) [46] presents the results of
causal discovery but much of the focus is on showing the underlying
evidence for the graph. This includes prominently featuring tables with
statistical summaries and integrating views for examining individual
records in a dataset. Visualizations of conditional independence and
interactive regression exploration [6] are similarly focused on low-
level mechanisms, rather than overall model comparison. The causal
diagrams presented show many important parts of causal models and
illustrate the types of data encodings that are needed to understand
causal relationships. Wang and Mueller’s follow-up work on VCA
looks at multiple models, but the comparison is again focused on the
mechanics that built the model or comparison of the results the models
imply [47]. The work in this paper is complementary, comparing
structures to elicit decisions about the input to a simulation.

Other tools approach causality more abstractly using animation [9–
11] and focus on reasoning about the model’s construction. Rather than
asking questions about ‘what if the model were different’, these papers
focus on ‘what does the model say’. A major contribution of this prior
work is studies that indicate that directly representing time (e.g., in
Hasse diagrams [27]) is not essential to understanding causal models.

Causal Reasoning & Discovery The graphs discussed in this pa-
per are the results of causal discovery algorithms. A graph represen-
tation is essential to modern notions of causal reasoning [35, 36], and
often restricted to a directed acyclic graph (DAG). The nodes of the
causal graph represent the variables of the causal model. The links
are directed and represent proximate causes, where information flows
from one variable to the next in the direction of the arrow. This model
captures both direct and indirect causal relationships through graph
traversals. Recent advances in causal reasoning enable reasoning on
non-DAG graphs (cyclic or not fully directed), but reasoning is more
limited [20]. A DAG remains the most common representation.

Causal discovery algorithms attempt to build causal graphs from
tabular data . There are many algorithms [12, 22], though there are
fundamental limitations to what they can discover [49]. Several algo-
rithms are available through statistical packages such as pcalg [18, 23].
This paper uses the GS (Grow-Shrink) [30], PC (Peter-Clark) [5],
MMPC (Max-Min Parents-Children) [45], and GES (Greedy Equiva-
lence Search) [4] algorithms, which are readily available in R (pcalg)
or python (causal discovery toolkit/CDT [21]). These are common
benchmark algorithms (e.g., [50]). Many techniques for causal dis-
covery overlap with Bayesian networks modeling (e.g., the BNLearn
library [43] is a dependency for CDT).

DAGs are not not the only causal models. Given the fundamental lim-
itations of causal discovery, the output of causal discovery algorithms



is not always a DAG. Partial ancestral graphs (PAGs) or maximal an-
cestral graphs (MAGs) represent families of DAGs and honestly report
ambiguity (e.g., rather than randomly reporting a specific DAG) [39,48].
An ensemble of individual causal models also may not be a DAG (even
if all inputs were DAGs). For the purposes of this paper, all such graphs
will be considered ‘causal models’.

3 GRAPH COMPARISON FOR CAUSAL DISCOVERY

Graph comparison is a natural part of causal discovery because it
enables exploration of many causal discovery results. By restricting
the problem domain to causal discovery, many of the complex and
intractable aspects of graph comparison are reduced. The overall goal
in causal discovery is to find a suitable model of a dataset. What
makes a model “best” depends on the problem that the causal model is
addressing. Because there are application-specific fitness metrics and
limited ability to provide expert knowledge to the discovery algorithms,
the overall causal discovery process benefits from interactive tools that
enable cycles of feedback or refinement to algorithm inputs.

Algorithmic approaches to causal discovery are inherently lim-
ited [20, 48]. In most cases, the best that can be provided is a Markov
Equivalence Class, where not all edges are directed [39]. To be tractable,
the algorithms make simplifying assumptions about either the structure
of the causal graph or the properties of the data that may not be testable.
Therefore, using causal discovery algorithms should be treated as ex-
ploring possible structures suggested by the algorithms (rather than
identifying a precise model). Graph comparison is a natural part of
that exploration. For causal discovery, this is a (mostly) labeled graph
comparison, significantly simplifying the problem.

We worked closely with a team of analysts using causal discovery
algorithms to identify the questions they were trying to answer about
causal discovery. The questions included “Where do these graphs
agree?”, “Where do these graphs differ?”, and “How does this graph
compare to my understanding of the underlying process?” Answering
these questions involved an iterative investigation of inspecting results
and modifying algorithm parameters.

Tasks the analysts used to answer their questions included:
T1: Identify nodes/edges shared between graphs
T2: Identify nodes/edges present in one graph but not in others
T3: Identify when the direction of an edge differs between graphs
T4: Identify graph cycles
T5: Compare the confidence that algorithms place on edges
T6: Compare results changes from algorithm-input/parameter changes
T7: Compare causal graphs from ensembles of algorithms to those

from individual algorithm results
In the causal discovery context, graph comparison contributes to

feedback loops where the analysts change inputs to the causal discovery
algorithms based on their interactions inside the graph comparison
tools. Tasks that close the feedback loop and update causal discovery
(abbreviated FT to distinguish from the internal tasks) include:
FT1: Specify edges that future iterations should ignore
FT2: Specify edges that are asserted to be present
FT3: Identify nodes to combine within a graph (common when dealing

with related factors’ variables, e.g., one-hot encoding)
FT4: Identify nodes that are noise and should be removed from con-

sideration, additional variables to collect data for, or constructs to
include (e.g., proxies of unobserved variables)

FT5: Construct ensembles from the results of several algorithms
These feedback loops are an important way that our graph compari-

son tool enables human-machine teaming; analysts’ tacit knowledge
and observations can be used as inputs to the discovery algorithms to
refine and improve discovery on subsequent iterations.

The challenges of graph comparison are simpler in a causal discovery
context than in a general-purpose context. There are 3 major differences.
First, the range of things that must be compared is constrained by
reliable labels in the causal discovery context. The labels come from
the input data, and are generally shared between the different algorithm
results. (Some algorithms may add or drop columns, but any node
with a label from the input data represents the same thing.) This
tightly constrains which graph elements must be compared to each

Theft

ThisCarCost

CarValue

ThisCarDam

PropCost

ILiCost

SocioEcon

AntiTheft

RiskAversion GoodStudent

HomeBase

MakeModel VehicleYear

OtherCar

OtherCarCost

Cushioning

MedCost

Accident

SeniorTrain

DrivQualityDrivHist RuggedAuto

DrivingSkill

Age

Airbag Antilock

Mileage

Fig. 2: Ground-truth causal graph for the insurance model. “Hidden”
(grayed) would typically be unobservable for real-world insurance
evaluations. Outcome nodes are rectangular.

other. Second, the types of comparisons done between nodes and edges
are more constrained. Rather than comparing arbitrary attribute values,
causal discovery attribute comparison is most often concerned with
edge weight (sometimes absolute weight, and sometimes the difference
between two weight). Third, the structural properties of most interest
in the causal discovery context are more often local properties, while
general graph comparison may look at global properties. Beyond the
presence/absence of specific links, direction disagreements are the most
important structural property for in the causal discovery context. Using
causal discovery tasks to focus the graph comparison tasks also focused
and simplified our interface.

4 GRAPH COMPARISON VISUALIZATIONS

To illustrate the visualizations and how analysts can leverage them, we
use the ‘Insurance’ causal model of car insurance risks [3]1. The model
and data samples come from BNLearn, an R package for bayesian net-
work learning and inference [43]. The overall model tries to estimate
the expected claim costs of an insurance holder. Although there are 27
nodes and 52 causal relationships (edges) in the source causal model
(shown in Figure 2) , only 15 of the nodes are observable variables
that would be accessible in real-world applications. The variables are
a mixture of binary, categorical, ordinal and semi-continuous (i.e., in-
teger numerical over a wide range). The variables are related to the
insured vehicle (e.g., Mileage, VehicleYear, etc.), the insurance holder
(e.g., Age, GoodStudent, etc.) and the potential outcomes of a claim
(MedCost, PropCost, ILiCost). This dataset is used in all example
visualizations in this paper.

We worked with a data analysis team and implemented our tool
for graph comparison. It has two views that address the questions
and supports the tasks identified earlier. These views were developed
through many iterations with the analysis team, focusing on tasks and
techniques the analysis team needed to achieve their goals. The first
view compares several graphs at once in a broad comparison enabling
an overview of many graphs (top in Figure 3; left in Figure 1). The
second view compares two graphs directly in a focused comparison to
get more detailed information about those graphs (bottom in Figure 3;
right in Figure 1). The views share many interface elements to provide
a consistent user experience. Figure 3 illustrates the two views and the
controls/options made available in sidebars. (Figure 1 also shows the
central component of each view.)

4.1 Shared Controls
Both views have a controls sidebar that support the tasks described in
section 3. The controls are briefly described here (to highlight overlaps),

1The Insurance model was downloaded from https://www.bnlearn.com/
bnrepository/discrete-medium.html#insurance

https://www.bnlearn.com/bnrepository/discrete-medium.html#insurance
https://www.bnlearn.com/bnrepository/discrete-medium.html#insurance


A

A

D

E

F

I
J

H

C

B

D

F

E

G

Br
oa

d 
Co

m
pa

ris
on

 V
ie

w
Fo

cu
se

d 
Co

m
pa

ris
on

 V
ie

w

Fig. 3: Both views with respective toolbars, representing the insurance dataset. The top view is the broad comparison view, the bottom is the
focused comparison view. The controls on the toolbars include (A) the button to navigate between views, graph similarity as (B) an algorithm map
or (C) algorithm heatmap, (D) Venn diagram controls, (E) edge weight filters, (F) node filters by name or selection, (G) additional highlighting
options for the broad comparison view, (H) node link filters in the focused view, (I) the ability to toggle node-label/tooltips visibility in the
focused comparisons and (J) the ability to interact with Jupyter notebook state (these buttons are also present in the broad view, but clipped out
for presentation purposes).



(a) Broad comparison with the Venn diagram set to intersection with the post-ensemble, highlighting edges that blacklisting removed. (b) Graph distance visualizations.

Fig. 4: Selected tool state comparing graphs before/after blacklisting

with view-specific details provided in the description of the view itself.
The Venn comparison controls (Figure 3 control D) enable a direct

comparison of graphs, using one algorithm’s graph as a reference and
comparing all other algorithms’ graphs to it (tasks T1, T6, T7). This
helps identify shared (or unique) nodes/edges. The Venn diagram
control was the focused of many iterations. As the overall tool evolved
and more causal questions were asked, the comparisons enabled by the
Venn Diagram emerged as requirements. In early iterations it was a
list of radio buttons, later a drop-down list. The Venn Diagram was
eventually chosen because (1) it matched the language the analysts
were eventually using and (2) it provided a compact representation of
the possible configurations. This type of iterative design tightly coupled
with domain experts was used extensively in our development.

Some causal discovery algorithms include an edge weight to indicate
relative confidence for the edge’s presence. Edges can be filtered by
their weights using the ‘Filter by edge weights’ control (i.e., , control
E; tasks T5, T6). This component is a histogram of weights with a
selection band inlaid where the selection band can be manipulated to
select a range of weights. To be most effective across many different
graphs, the edge weights should be normalized before loading the
graphs into the tool. However, because edge weight meaning varies
by algorithm (especially when ensembling multiple results), there is
no single normalization procedure. Edge normalization, therefore, is
outside the scope of the tool itself (feedback task FT5).

Node filters may be set by regular expression in either view through
the filter box (control F; tasks T1, T2). A list of current filters is
accumulated below the filter box. Individual filters may be cleared by
clicking on them or all filters can be cleared at once. Text-based entry
was not originally an option (relying instead on direct selection), but it
was added as the analysts often came with a focus in mind; providing
text-based entry for filtering enabled them to avoid searching the graph
for relevant nodes. This was later expanded to regular expressions as
many graphs had nodes with related names (e.g., ‘cost’ in the example
graph is mentioned in several nodes).

Navigating between the two views is done through the button (A),
using the check-boxes above the graph columns in the broad view to
select the two graphs to compare in the focused view. In the broad view,
the button is disabled until two graphs are selected. Moving back to the
broad view is always enabled in the focused view.

4.2 Broad Comparison View

The broad comparison view allows an analyst to compare many graphs
at once, illustrated in Figure 3. This view shows all graphs in a matrix-
like format where every graph is shown in its own column and every
node has a row. By default, upstream edges are plotted to the right of
nodes (downstream edges to the left), which helps analysts to distin-
guish cause and effect more easily (when control G is set to ‘compact
view’ all edges are placed on one side: more graphs may be seen at
once but a single graph is more cluttered). Representing graphs this
way enables analysts to compare edges related to a single node in many
graphs (tasks T1, T2, T3) and is based on the TimeArcTrees layout [14].

The default Vertical node order is the spectral ordering [17, 32] of
the union of all the graphs compared, but can be changed when the tool
is instantiated. Spectral ordering sorts nodes using the second smallest
Eigenvector of the Graph Laplacian (i.e., the Fielder Vector) [17]. Spec-
tral ordering is related to many structural features of the graph [32] and
tends to keep link distances short.

Showing all of the edges is often cluttered. The filtering options
in Figure 3 parts E, F and G reduce the number of nodes and edges
displayed (tasks T1, T4). The Venn diagram tool in part D changes
the visibility/weighting of nodes and edges. Figure 1 shows a graph
that has been filtered and the Venn Diagram control set to highlight
edges shared with the rightmost graph. (The Venn diagram tool enables
comparisons similar to those in Diffany [28]).

The broad comparison view also uses the node filter control. It also
supports directly clicking on node names to highlight those nodes, and
adding the current selection to the current filter (tasks T1, T2). When
filtering by direct selection, the node and its neighbors are kept. The



(a) Highlighting edges based on relationship polarity in the broad comparison view
(enabled with a toggle in part G of Figure 3). This example shows causes and effects
of damage to the insured car, “ThisCarDam”.

(b) Neighborhood highlights in the focused comparison tool. Nodes outside the
neighborhood are hidden, and edges toward/away are shown in orange/purple. Edges
present in both graphs are solid. Because ’intersection’ is selected in the Venn tool,
edges present in only one graph are thinner and more transparent.

Fig. 5: Additional details available in the Broad and focused comparison views

neighbors are also kept to keep context of the filter for future analysis.
Much like filtering nodes or edges, analysts might need to filter the

graphs they are comparing. To do this they can use the “Graph Plot”
supporting control (Figure 4b) to understand which graphs are similar
(tasks T6, T7). The plot uses scikit-learn’s multi-dimensional scaling
(MDS) method with the previously mentioned graph distance metric
to display all the graphs on a 2D plot [26, 37]. Points on this plot
can be used to toggle the visibility of a graph. The “Graph Heatmap”
control (Figure 4b lower) is an alternate way to explore graph similarity
and filter out algorithms. It shows pairwise similarities between all
graphs to summarize overall agreement (or disagreement). It is based
on the same metric as graph order and darker colors indicate that more
components are shared. A graph’s filter state is toggled in the graph
heatmap control by clicking on its name along either axis.

A collection of toggle controls also provides additional view configu-
rations (Figure 3, section G), specifically informed by causal discovery.
Much like the Venn diagram control, these options were developed dur-
ing an iterative process with the analysts. This is not an exhaustive list
of what was tried, but it represents configurations that were consistently
useful. The configuration controls are:
Sorting by metric: When unchecked, graphs are displayed in the or-

der they are passed. When checked, order is based on similarity to
the reference graph (task T6, T7). The default uses PageRank [34]
to sort nodes and Kendall’s Tau to compute similarity to the first
graph [24]. A custom function can also be provided.

Highlight edges using polarity: Edge polarity indicates if an input re-
enforces or inhibits a response. This option changes the edge en-
coding to emphasize disagreements (T3) and is similar to options
used in other causal-reasoning tools [28, 46, 47]. (see Figure 5a
for an example of this in use.)

Highlight globally shared edges: Finding which relationships algo-
rithms agree on is a comparison. This option highlights the links
that are shared between all graphs (including the direction) in blue
(tasks T1, T7). This can be used to build a white-list or design
filters that remove groups that are consistent between algorithms
(see Figure 1, left side, for an illustration of this option).

Highlight shared links with different directions: Algorithms may
agree that a relationship exists, but disagree on the relationship
direction. This is expected since many algorithms refine a Markov
Equivalence class [18]. Edges where there are disagreements are
a place experts can assert their knowledge. Highlighting disagree-
ments makes them easy to find (tasks T1, T3, T7). This option
highlights the links that are shared between all graphs (regardless
of direction) in purple (see Figure 1, left side) and is similar to
region of interest techniques in tree comparisons tools [33, 40].

Compact View: When comparing many graphs, horizontal display
space is quickly used up. The ‘compact view’ option puts all
edges on same side. This adds more graphs to the screen, but
makes tracing edges more difficult (task T1, T2).

A typical workflow using the broad comparison view includes:

1. Use node selection filters or the regular expression filter to narrow
down the important nodes to examine.

2. Compare linkage structure to understand differences and similari-
ties using filters, thresholds, and discovery-focused toggles.

3. Save tool state to a variable (e.g., for documentation).
4. Use the insights from interactions with the tool to update black-

lists, refine algorithms, identify where to collect more data, or try
different graph parameters in causal discovery.

4.3 Focused Comparison View
The focused comparison tool enables detailed comparisons between
two graphs, designed to enable an analyst to find interesting sections of
the graphs and explore structures in more detail. It is most similar in
style to other causal exploration tools as it uses a traditional node-link
diagram as its main representation [46, 47]. This tool uses 3 juxtaposed
panels that each display a graph, as in Figure 3. The panels on the sides
show input graphs. The panel in the middle displays the result of a set
operation on the input graphs’ nodes and edges (similar to Diffany [28]).
The three panels use a shared spring-force embedding (similar to DyNet
and Gasoline [13, 31]) and follow coordinated multiple views (CMV)
conventions for zoom, pan, and picking.

All three panels react to the currently selected comparison state in
the Venn diagram tool. The central panel directly represents the current
Venn diagram selection. Elements on the side panels are emphasized
if they are also present in the middle or de-emphasized if they are not
(similar to the change highlighting in [1]). Changes to opacity, line
style and stroke colors are used indicate overlap/exclusion between the
central and side panels. These encodings provide an analyst with quick
access to information about how a node interacts with other nodes in
each of the causal graphs compared.

In the three main panels, the analysts can hover over a node to get
more information about it and its neighbors (see Figure 5b). This
context is captured by the node, its incident edges, and its immediate
neighbors (tasks T1, T2, T3, T4 for short cycles); all other nodes and
edges are filtered out so the information is presented as cleanly as
possible. In this focus view, edges are colored by their direction to
distinguish causes from effects and highlight differences in direction
between the graphs (if present). This filtering is hover-based instead of
selection based because it is intended to be used as a quick-check. The
focused view also includes a node-degree filter that is not present in the
broad comparison view (control H in Figure 3). This enables analysts
to select high or low degree nodes to focus in on further, depending on
their current line of investigation.

If the analyst does not have previous knowledge of the causal graph,
they can use the focused comparison view to identify where to investi-
gate. If they do have knowledge of the graph, the focused comparison
view can be used to compare approximations to that causal graph.
Using the focused comparison typically follows the following steps:

1. Select a pair of graphs. By convention, if a canonical graph exists,
it is selected and placed on the left.



2. Specify a difference or intersection comparison for the center
pane and look for an interesting structure.

3. Use filters and hover to understand the community structure (con-
founder, collider, etc.) and the differences between the graphs.

4. Save the tool state to a variable for future use.
5. Use the insights to update algorithm parameters or inputs.

5 EXAMPLE WORKFLOW

Using the insurance dataset and our graph comparison tool, one of the
analysts did an extended analysis session. Their task was to identify
algorithms/parameters that could recover the causal graph (which is
known) so the ensemble could be applied where the graph is not known.
This section describes an abstraction/simplification of their workflow
over several sessions and how our tools impacted it. Their workflow
is iterative, passing through both visualization views and the causal
discovery algorithms multiple times and informs Figure 1.

The analyst starts by trying a variety of algorithms, selected based
on their availability and a lack of known violations of preconditions
within the data. Because their task is to evaluate the effectiveness of
algorithms, they treat all of the variables as observable at first and
include all 27 in the analysis. After the algorithms have completed
causal discovery, all of the graphs are loaded in the broad comparison
view (see Figure 3). Observing the similarity between algorithms in the
graph plot and graph heatmap in the upper right, it is clear that MMPC
creates a graph that is significantly different from the other algorithms
(tasks T1, T2). The broad comparison view shows that both MMPC
and GES have more edges than PC or CCDR. Furthermore, MMPC has
more symmetric edge pairs than CCDR (task T4), since there are more
pairs of edges on both side of the nodes column, illustrating both an
upstream and downstream relationship between a pair of nodes.

Comparing MMPC to an ensemble of all algorithms (task FT5) in
the focused comparison tool (Figure 3), those symmetric pairs are more
apparent (task T7). Further, selecting to show the ‘intersection’ of the
two graphs using the Venn diagram tool shows that MMPC does not
contribute many unique edges to the ensemble (tasks T1, T2, T7). This
is clear because the central region is very similar to the ensemble graph.
This leads the analyst to decide to omit MMPC from future analysis.

Based on the meaning of the variables, the analyst observes that
the ensemble (and other individual algorithm graphs) have edges with
whose direction contradict the analysts intuition (task T3). For example,
vehicle-related properties (car cost) causing driver properties (good
student) or age being the effect of any other variables. (The examples
in Figure 1 show graphs focused on driver properties.) Therefore, the
analyst creates a series of blacklisted edges (task FT1) as an input to
a new iteration of the causal discovery algorithm (except for MMPC,
which is excluded from future iterations). After a few iterations, the
blacklist specifies that there can be no edges from vehicle properties to
people properties, no edges into age, and no edges out of the expected-
cost variables. (For algorithms that do not take blacklists and input,
these edges are removed at output time.)

To examine how these restrictions impact the output, the graphs be-
fore and after blacklist (task T6) are visualized in the broad comparison
view (Figure 4a). The after graphs are visibly simpler and have fewer
symmetric edges (task T4), while the graph plot shows that each algo-
rithm remains most similar to itself across iterations. This view shows
that GES is the most affected by the blacklisting (Figure 4b). The two
versions of GES (task T6) are moved to the focused comparison view
and the analyst decides the changes are an improvement (tasks T2, T3).

Along with identifying blacklist edges (task FT1), an analyst may
identify a set of causal relationships that must be included (task FT2)
or identify additional features that logically may be influencing indirect
causal paths, that might appear as unlikely edges. For example, in
the insurance example we know that there are causal paths from an
observed variable (“DrivQuality”, the quality of the insured’s driving)
to an unobserved variable (“Accident”, severity of the accident) and
from the unobserved variable (“Accident”) to another observed variable
(“ILiCost”, inspection cost). If the analyst removes the unobservable
variables from causal discovery, several algorithms identify this indirect
causal path as a direct causal link from “DrivQuality” to “ILiCost” (see

(a) CCDr, PC, and GES without constructs.

(b) GES without and with constructs.

Fig. 6: Broad comparison view filtered to focus on relationships that in-
clude the insured driver’s ability (“DrivQuality”) and the inspection cost
(“ILiCost”), with and without the “LikelihoodOfAccident” construct.

Ref? Question Broad Comparison Focused Comparison
True What is right? Best precision/recall? What is right/missed?
False What is happening Which graphs are similar? What is similar?

Table 2: Questions the tools can answer with/without a reference graph.

Figure 6a) because the intermediary variable is missing (task T2).

Observing the algorithm outputs in either the broad or focused com-
parison views, analysts can identify potential constructs or latent vari-
ables that were not originally observed but could be represented using
a proxy generated from observed variables (tasks FT3, FT4). For ex-
ample, the analyst may see the common link from “DrivQuality” to
“ILiCost” and, using their subject matter expertise, hypothesize that this
may be an indirect path with a missing intermediary node such as the
driver’s likelihood of the type or severity of an accident and construct a
proxy for this unobserved variable using a combination of driver char-
acteristics (quality of driving, driving history, age, home-base location)
and vehicle characteristics (whether it is older, has higher mileage, has
anti-lock brakes) that may contribute to the likelihood or severity of an
accident. In Figure 6b, we see that GES accurately identifies the causal
path of “DrivQuality′′ → “LikelihoodO f Accident ′′ → “ILiCost ′′ in-
stead of from “DrivQuality” to “ILiCost” directly.

As shown in Figure 7, the analyst can also use the focused compari-
son view to see improvement in causal relationships that do not directly
incorporate the constructs that were added (tasks T5, T6). In this case
the center panel illustrates the new causal relationships discovered by
GES when the additional constructs were included. When the analyst
compares the results of causal discovery from the GES algorithm with
and without the constructs, there are several spurious links that are no
longer included: i.e., a causal link from the vehicle’s mileage to the
inspection cost. The analysts continued through several more iteration
cycles before settling on set of algorithms and parameters.



Fig. 7: Focused comparison view comparing GES before (left panel) and after (right panel) including constructs, filtered to causal relationships
that include the driving quality of the insured driver (“DrivQuality”) or the inspection cost outcome (“ILiCost”), examining the difference when
the algorithm has access to the “LikelihoodOfAccident” construct.

6 DISCUSSION

The graph-comparison tool can also used to evaluate the effectiveness
of causal discovery algorithms when there is a reference graph (i.e.,
a ‘ground-truth’ graph). This ground truth is often known for syn-
thetic datasets because it is part of the data curation process. It may
also be created by a subject matter expert or be provided by a specific
benchmark algorithm. In each cases, the fundamental task shifts from
exploration of options to evaluation. Table 2 outlines the different
questions each tool can address with/without a reference graph. The
major difference when working with a reference graph is that compar-
isons are more directed; the focus is on what is missed (or correctly
identified). In the broad comparison tool, the reference graph is passed
as the first graph (or selected in the sidebar controls). When observing
other graphs, the dotted lines then indicate errors instead of simply dif-
ferences. In the focused comparison tool, the Venn diagram control can
be used to directly ask for missing nodes/edges by selecting left-only
or for extra edges by selecting the right-side only.

In the example workflow the focus was on comparisons between
algorithms. However, ensemble refinement typically involves sev-
eral feedback cycles in its own right. ‘Which algorithms should be
used in the ensemble?’ is the base question. Comparison between
different algorithm combinations is similar to the discussion about
blacklist/whitelist but looks at different combinations of algorithms
instead the direct impact of parameters on specific algorithms. In our
experience, ensemble evaluation is interleaved with an algorithm-by-
algorithm exploration; individual algorithms may be removed from an
ensemble based on its individual evaluation.

The tools were originally developed with examples from research
papers with few nodes and relatively sparse edges. Applications often
generated much larger graphs. Some applications had hundreds of
nodes, resulting from using 1-hot (or n-hot) encoding to represent
variables for the discovery algorithms. This drove our team to develop
workflows that included aggregating, selecting and thresholding causal
discovery algorithm outputs prior to loading the graphs into our tools
in addition to the selecting/thresholding done in the tools. In practice,
30-or-so node networks are practical for these tools.

7 FUTURE WORK

The graphs loaded into the broad comparison tool were essentially
static. However, the broader workflow often involved ensembling dif-
ferent discovery algorithms and blacklisting edges. These techniques
are entirely external to our tools, but would be beneficial additions.
The merging technique shown in TimeArcTrees [14] cannot be applied
directly (since it is sequence dependent and always removes the con-
tributing graphs) but a similar technique may be if a sequence of causal
graphs represents different causal behavior at different times in a time
series. It may also be a means to build ensembles interactively.

We are looking at extending the focused comparison tool to more
graphs. The focused comparison layout is a natural metaphor for
comparison. However, the underlying analysis is not inherently limited

to two graphs. The focused comparison tool provides more algorithmic
support for comparison than the broad comparison tool (which relies
more on the visual system to do comparisons), which makes extending
it to more graphs appealing. Avenues of exploration include different
layouts that would enable three or four graphs to be compared naturally
and how to incorporate information-quality into the analysis and display
(such as known ground truth or expert assertions).

As noted, the analyst workflow was simplified because the tool was
integrated directly into in a Jupyter notebook. However, the integration
with the notebook is current fairly superficial; variables can be passed in
and a copy-paste mechanism allows state to flow back out. This forced
a beneficial loose coupling, and related flexibility, with the analysis
algorithm without directly interfacing with the analysis algorithms but
being able to set Jupyter notebook variables directly would ease inter-
actions. For example, the ability to export an edge-filter set to a python
variable would enable more rapid iteration around black- or white-lists,
without directly interfacing with the causal discovery algorithms (the
interaction would still be mediated by the Jupyter environment and
use cells to drive execution). This deeper integration would likely re-
quire changes to analysts’ expectations and would present technical
challenges for execution and reproducibility.

With a more complete integration, the overall process of causal
graph creation could be more like taking notes on a dataset. The graph
represents an operational hypothesis and interactions with the data are
done in the context of that graph. This is akin to a “higher-order” view
of the dataset [7]. Combined with algorithmic discovery, the techniques
discussed in this paper lay a foundation for interactively constructing
that view. A well integrated system, where discovery and analysis
revolve around a shared causal graph would be a powerful interactive
analysis tool. Combining our techniques with the simulation-results
focused visualizations from Wang and Muelder [47] would be a strong
step towards realizing Pearl’s causal inference engine [35].

8 CONCLUSION

This paper has argued that graph comparison is essential for causal
discovery. A human-in-the-loop is essential to building causal model be-
cause of the inherent limitations in causal discovery algorithms. Using
tools that focused on graph comparison improved analysts workflows
and helped create causal graphs that the analysts had more confidence
in. We have found that tools can be built into an existing analysis envi-
ronment (i.e., Jupyter notebooks) to make a more integrated workflow.
This change in workflow helped analysts to move beyond descriptions
of what had occurred to discovering why.

ACKNOWLEDGMENTS

This research was developed with funding from the Defense Advanced
Research Projects Agency (DARPA). The views, opinions and/or find-
ings expressed are those of the author and should not be interpreted as
representing the official views or policies of the Department of Defense
or the U.S. Government.



REFERENCES

[1] B. Bach, E. Pietriga, and J.-D. Fekete. Graphdiaries: Animated transitions
andtemporal navigation for dynamic networks. IEEE Transactions on
Visualization and Computer Graphics, 20(5):740–754, 2014.

[2] F. Beck, M. Burch, S. Diehl, and D. Weiskopf. A taxonomy and survey of
dynamic graph visualization. Comput. Graph. Forum, 36(1):133–159, Jan.
2017. doi: 10.1111/cgf.12791

[3] J. Binder, D. Koller, S. Russell, and K. Kanazawa. Adaptive probabilistic
networks with hidden variables. Machine Learning, 29(2):213–244, 1997.
doi: 10.1023/A:1007421730016

[4] D. M. Chickering. Optimal structure identification with greedy search.
Journal of Machine Learning Research, 3(Nov):507–554, 2002.

[5] D. Colombo and M. H. Maathuis. Order-independent constraint-based
causal structure learning. The Journal of Machine Learning Research,
15(1):3741–3782, 2014.

[6] D. Dingen, M. van’t Veer, P. Houthuizen, E. H. J. Mestrom, E. H. H. M. Ko-
rsten, A. R. A. Bouwman, and J. van Wijk. Regressionexplorer: Interactive
exploration of logistic regression models with subgroup analysis. IEEE
Transactions on Visualization and Computer Graphics, 25(1):246–255,
2019.

[7] T. Dwyer. Network visualization as a higher-order visual analysis tool.
IEEE Comput. Graph. Appl., 36(6):78–85, Nov. 2016. doi: 10.1109/MCG.
2016.117

[8] J. Ellson, E. Gansner, E. Koutsofios, S. North, and G. Woodhull. Graphviz
and dynagraph – static and dynamic graph drawing tools. In M. Junger and
P. Mutzel, eds., Graph Drawing Software, Mathematics and Visualization,
pp. 127–148. Springer-Verlag, Berlin/Heidelberg, 2004.

[9] N. Elmqvist and P. Tsigas. Causality visualization using animated grow-
ing polygons. In Proceedings of the IEEE Symposium on Information
Visualization, pp. 189–196. IEEE, New York City, NY, 2003.

[10] N. Elmqvist and P. Tsigas. Growing squares: Animated visualization
of causal relations. In Proceedings of the ACM Symposium on Software
Visualization, pp. 17–26. IEEE, New York City, NY, 2003.

[11] N. Elmqvist and P. Tsigas. Animated visualization of causal relations
through growing 2d geometry. Information Visualization, 3(3):154–172,
2004.

[12] C. Glymour, K. Zhang, and P. Spirtes. Review of causal discovery methods
based on graphical models. Frontiers in Genetics, 10:524, 2019. doi: 10.
3389/fgene.2019.00524

[13] I. H. Goenawan, K. Bryan, and D. J. Lynn. DyNet: visualization and
analysis of dynamic molecular interaction networks. Bioinformatics,
32(17):2713–2715, 05 2016. doi: 10.1093/bioinformatics/btw187

[14] M. Greilich, M. Burch, and S. Diehl. Visualizing the evolution of com-
pound digraphs with timearctrees. Comput. Graph. Forum, 28(3):975–982,
2009. doi: 10.1111/j.1467-8659.2009.01451.x

[15] R. P. Grimaldi. Discrete and Combinatorial Mathematics; An Applied
Introduction. Addison-Wesley Longman Publishing Co., Inc., USA, 4th
ed., 1999.

[16] R. Guo, L. Cheng, J. Li, P. R. Hahn, and H. Liu. A survey of learning
causality with data: Problems and methods, 2018.

[17] A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring network structure,
dynamics, and function using networkx. In G. Varoquaux, T. Vaught, and
J. Millman, eds., Proceedings of the 7th Python in Science Conference, pp.
11 – 15. Pasadena, CA USA, 2008.

[18] A. Hauser and P. Bühlmann. Characterization and greedy learning of inter-
ventional Markov equivalence classes of directed acyclic graphs. Journal
of Machine Learning Research, 13:2409–2464, 2012.

[19] J. M. Hofman, A. Sharma, and D. J. Watts. Prediction and explanation in
social systems. Science, 355(6324):486–488, 2017. doi: 10.1126/science.
aal3856

[20] A. Jaber, J. Zhang, and E. Bareinboim. Causal identification under markov
equivalence, 2018.

[21] D. Kalainathan and O. Goudet. Causal discovery toolbox: Uncover causal
relationships in python, 2019.

[22] M. Kalisch and P. Bühlmann. Causal structure learning and inference:
A selective review. Quality Technology & Quantitative Management,
11(1):3–21, 2014. doi: 10.1080/16843703.2014.11673322

[23] M. Kalisch, M. Mächler, D. Colombo, M. H. Maathuis, and P. Bühlmann.
Causal inference using graphical models with the R package pcalg. Journal
of Statistical Software, 47(11):1–26, 2012.

[24] M. G. Kendall. A new measure of rank correlation. Biometrika, 30(1/2):81–
93, 1938.

[25] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Fred-
eric, K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila,
S. Abdalla, and C. Willing. Jupyter notebooks – a publishing format for
reproducible computational workflows. In F. Loizides and B. Schmidt,
eds., Positioning and Power in Academic Publishing: Players, Agents and
Agendas, pp. 87 – 90. IOS Press, 2016.

[26] J. Kruskal. Multidimensional scaling by optimizing goodness of fit to a
nonmetric hypothesis. Psychometrika, 29(1):1–27, 1964.

[27] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, July 1978. doi: 10.1145/359545.
359563

[28] S. V. Landeghem, T. V. Parys, M. Dubois, D. Inzé, and Y. V. de Peer.
Diffany: an ontology-driven framework to infer, visualise and analyse
differential molecular networks. BMC Bioinformatics, 17(1):18, 2016. doi:
10.1186/s12859-015-0863-y

[29] M. Levandowsky and D. Winter. Distance between sets. Nature,
234(5323):34–35, 1971. doi: 10.1038/234034a0

[30] D. Margaritis and S. Thrun. Bayesian network induction via local neigh-
borhoods. In Advances in Neural Information Processing systems, pp.
505–511, 2000.

[31] G. Micale, A. Continella, A. Ferro, R. Giugno, and A. Pulvirenti. Gaso-
line: a cytoscape app for multiple local alignment of ppi networks.
F1000Research, 3:140–140, 2014. doi: 10.12688/f1000research.4537.
2

[32] B. Mohar. The laplacian spectrum of graphs. In Graph Theory, Combina-
torics, and Applications, pp. 871–898. Wiley, 1991.

[33] T. Munzner, F. Guimbretière, S. Tasiran, L. Zhang, and Y. Zhou. Treejux-
taposer: Scalable tree comparison using focus+context with guaranteed
visibility. In ACM SIGGRAPH 2003 Papers, SIGGRAPH ’03, p. 453–462.
Association for Computing Machinery, New York City, NY, USA, 2003.
doi: 10.1145/1201775.882291

[34] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation
ranking: Bringing order to the web. Technical Report 1999-66, Stanford
InfoLab, November 1999. Previous number = SIDL-WP-1999-0120.

[35] J. Pearl. The seven tools of causal inference, with reflections on machine
learning. Commun. ACM, 62(3):54–60, Feb. 2019. doi: 10.1145/3241036

[36] J. Pearl and D. Mackenzie. The book of why: the new science of cause
and effect. Basic Books, New York City, NY, 2018.

[37] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[38] F. Pérez and B. E. Granger. IPython: a system for interactive scientific
computing. Computing in Science and Engineering, 9(3):21–29, May
2007. doi: 10.1109/MCSE.2007.53

[39] T. Richardson. A discovery algorithm for directed cyclic graphs. In
Proceedings of the Twelfth International Conference on Uncertainty in
Artificial Intelligence, UAI’96, p. 454–461. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1996.

[40] O. Robinson, D. Dylus, and C. Dessimoz. Phylo.io : Interactive Viewing
and Comparison of Large Phylogenetic Trees on the Web . Molecular
Biology and Evolution, 33(8):2163–2166, 04 2016. doi: 10.1093/molbev/
msw080

[41] S. Rufiange and M. J. McGuffin. Diffani: Visualizing dynamic graphs
with a hybrid of difference maps and animation. IEEE Transactions on
Visualization and Computer Graphics, 19(12):2556–2565, Dec. 2013. doi:
10.1109/TVCG.2013.149

[42] U. Schöning. Graph isomorphism is in the low hierarchy. J. Comput. Syst.
Sci., 37(3):312–323, Dec. 1988. doi: 10.1016/0022-0000(88)90010-4

[43] M. Scutari. Learning bayesian networks with the bnlearn R package.
Journal of Statistical Software, 35(3):1–22, 2010. doi: 10.18637/jss.v035.
i03

[44] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage,
N. Amin, B. Schwikowski, and T. Ideker. Cytoscape: A software environ-
ment for integrated models of biomolecular interaction networks. Genome
Research, 13(11):2498–2504, Nov 2003.

[45] I. Tsamardinos, C. F. Aliferis, and A. Statnikov. Time and sample efficient
discovery of markov blankets and direct causal relations. In Proceedings of
the ninth ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 673–678. New York City, NY, 2003.

[46] J. Wang and K. Mueller. The visual causality analyst: An interactive
interface for causal reasoning. IEEE Transactions on Visualization and

https://doi.org/10.1111/cgf.12791
https://doi.org/10.1111/cgf.12791
https://doi.org/10.1111/cgf.12791
https://doi.org/10.1111/cgf.12791
https://doi.org/10.1111/cgf.12791
https://doi.org/10.1111/cgf.12791
https://doi.org/10.1111/cgf.12791
https://doi.org/10.1111/cgf.12791
https://doi.org/10.1023/A:1007421730016
https://doi.org/10.1023/A:1007421730016
https://doi.org/10.1023/A:1007421730016
https://doi.org/10.1023/A:1007421730016
https://doi.org/10.1023/A:1007421730016
https://doi.org/10.1023/A:1007421730016
https://doi.org/10.1023/A:1007421730016
https://doi.org/10.1109/MCG.2016.117
https://doi.org/10.1109/MCG.2016.117
https://doi.org/10.1109/MCG.2016.117
https://doi.org/10.1109/MCG.2016.117
https://doi.org/10.1109/MCG.2016.117
https://doi.org/10.1109/MCG.2016.117
https://doi.org/10.1109/MCG.2016.117
http://www.springer.com/math/cse/book/978-3-540-00881-1
http://www.springer.com/math/cse/book/978-3-540-00881-1
http://www.springer.com/math/cse/book/978-3-540-00881-1
http://www.springer.com/math/cse/book/978-3-540-00881-1
http://www.springer.com/math/cse/book/978-3-540-00881-1
http://www.springer.com/math/cse/book/978-3-540-00881-1
http://www.springer.com/math/cse/book/978-3-540-00881-1
http://www.springer.com/math/cse/book/978-3-540-00881-1
http://www.springer.com/math/cse/book/978-3-540-00881-1
http://www.springer.com/math/cse/book/978-3-540-00881-1
https://doi.org/10.3389/fgene.2019.00524
https://doi.org/10.3389/fgene.2019.00524
https://doi.org/10.3389/fgene.2019.00524
https://doi.org/10.3389/fgene.2019.00524
https://doi.org/10.3389/fgene.2019.00524
https://doi.org/10.3389/fgene.2019.00524
https://doi.org/10.3389/fgene.2019.00524
https://doi.org/10.3389/fgene.2019.00524
https://doi.org/10.1093/bioinformatics/btw187
https://doi.org/10.1093/bioinformatics/btw187
https://doi.org/10.1093/bioinformatics/btw187
https://doi.org/10.1093/bioinformatics/btw187
https://doi.org/10.1093/bioinformatics/btw187
https://doi.org/10.1093/bioinformatics/btw187
https://doi.org/10.1093/bioinformatics/btw187
https://doi.org/10.1111/j.1467-8659.2009.01451.x
https://doi.org/10.1111/j.1467-8659.2009.01451.x
https://doi.org/10.1111/j.1467-8659.2009.01451.x
https://doi.org/10.1111/j.1467-8659.2009.01451.x
https://doi.org/10.1111/j.1467-8659.2009.01451.x
https://doi.org/10.1111/j.1467-8659.2009.01451.x
https://doi.org/10.1111/j.1467-8659.2009.01451.x
http://jmlr.org/papers/v13/hauser12a.html
http://jmlr.org/papers/v13/hauser12a.html
http://jmlr.org/papers/v13/hauser12a.html
http://jmlr.org/papers/v13/hauser12a.html
http://jmlr.org/papers/v13/hauser12a.html
http://jmlr.org/papers/v13/hauser12a.html
http://jmlr.org/papers/v13/hauser12a.html
https://doi.org/10.1126/science.aal3856
https://doi.org/10.1126/science.aal3856
https://doi.org/10.1126/science.aal3856
https://doi.org/10.1126/science.aal3856
https://doi.org/10.1126/science.aal3856
https://doi.org/10.1126/science.aal3856
https://doi.org/10.1126/science.aal3856
https://doi.org/10.1126/science.aal3856
https://doi.org/10.1080/16843703.2014.11673322
https://doi.org/10.1080/16843703.2014.11673322
https://doi.org/10.1080/16843703.2014.11673322
https://doi.org/10.1080/16843703.2014.11673322
https://doi.org/10.1080/16843703.2014.11673322
https://doi.org/10.1080/16843703.2014.11673322
https://doi.org/10.1080/16843703.2014.11673322
http://www.jstatsoft.org/v47/i11/
http://www.jstatsoft.org/v47/i11/
http://www.jstatsoft.org/v47/i11/
http://www.jstatsoft.org/v47/i11/
http://www.jstatsoft.org/v47/i11/
http://www.jstatsoft.org/v47/i11/
http://www.jstor.org/stable/2332226
http://www.jstor.org/stable/2332226
http://www.jstor.org/stable/2332226
http://www.jstor.org/stable/2332226
http://www.jstor.org/stable/2332226
http://www.jstor.org/stable/2332226
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
https://doi.org/10.1186/s12859-015-0863-y
https://doi.org/10.1186/s12859-015-0863-y
https://doi.org/10.1186/s12859-015-0863-y
https://doi.org/10.1186/s12859-015-0863-y
https://doi.org/10.1186/s12859-015-0863-y
https://doi.org/10.1186/s12859-015-0863-y
https://doi.org/10.1186/s12859-015-0863-y
https://doi.org/10.1186/s12859-015-0863-y
https://doi.org/10.1038/234034a0
https://doi.org/10.1038/234034a0
https://doi.org/10.1038/234034a0
https://doi.org/10.1038/234034a0
https://doi.org/10.1038/234034a0
https://doi.org/10.1038/234034a0
https://doi.org/10.12688/f1000research.4537.2
https://doi.org/10.12688/f1000research.4537.2
https://doi.org/10.12688/f1000research.4537.2
https://doi.org/10.12688/f1000research.4537.2
https://doi.org/10.12688/f1000research.4537.2
https://doi.org/10.12688/f1000research.4537.2
https://doi.org/10.12688/f1000research.4537.2
https://doi.org/10.12688/f1000research.4537.2
https://doi.org/10.1145/1201775.882291
https://doi.org/10.1145/1201775.882291
https://doi.org/10.1145/1201775.882291
https://doi.org/10.1145/1201775.882291
https://doi.org/10.1145/1201775.882291
https://doi.org/10.1145/1201775.882291
https://doi.org/10.1145/1201775.882291
https://doi.org/10.1145/1201775.882291
https://doi.org/10.1145/1201775.882291
https://doi.org/10.1145/1201775.882291
https://doi.org/10.1145/1201775.882291
http://ilpubs.stanford.edu:8090/422/
http://ilpubs.stanford.edu:8090/422/
http://ilpubs.stanford.edu:8090/422/
http://ilpubs.stanford.edu:8090/422/
http://ilpubs.stanford.edu:8090/422/
http://ilpubs.stanford.edu:8090/422/
http://ilpubs.stanford.edu:8090/422/
http://ilpubs.stanford.edu:8090/422/
https://doi.org/10.1145/3241036
https://doi.org/10.1145/3241036
https://doi.org/10.1145/3241036
https://doi.org/10.1145/3241036
https://doi.org/10.1145/3241036
https://doi.org/10.1145/3241036
https://doi.org/10.1145/3241036
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1093/molbev/msw080
https://doi.org/10.1093/molbev/msw080
https://doi.org/10.1093/molbev/msw080
https://doi.org/10.1093/molbev/msw080
https://doi.org/10.1093/molbev/msw080
https://doi.org/10.1093/molbev/msw080
https://doi.org/10.1093/molbev/msw080
https://doi.org/10.1093/molbev/msw080
https://doi.org/10.1093/molbev/msw080
https://doi.org/10.1109/TVCG.2013.149
https://doi.org/10.1109/TVCG.2013.149
https://doi.org/10.1109/TVCG.2013.149
https://doi.org/10.1109/TVCG.2013.149
https://doi.org/10.1109/TVCG.2013.149
https://doi.org/10.1109/TVCG.2013.149
https://doi.org/10.1109/TVCG.2013.149
https://doi.org/10.1109/TVCG.2013.149
https://doi.org/10.1109/TVCG.2013.149
https://doi.org/10.1016/0022-0000(88)90010-4
https://doi.org/10.1016/0022-0000(88)90010-4
https://doi.org/10.1016/0022-0000(88)90010-4
https://doi.org/10.1016/0022-0000(88)90010-4
https://doi.org/10.1016/0022-0000(88)90010-4
https://doi.org/10.1016/0022-0000(88)90010-4
https://doi.org/10.1016/0022-0000(88)90010-4
https://doi.org/10.18637/jss.v035.i03
https://doi.org/10.18637/jss.v035.i03
https://doi.org/10.18637/jss.v035.i03
https://doi.org/10.18637/jss.v035.i03
https://doi.org/10.18637/jss.v035.i03
https://doi.org/10.18637/jss.v035.i03
https://doi.org/10.18637/jss.v035.i03


Computer Graphics, 22(1):230–239, 2016.
[47] J. Wang and K. Mueller. Visual causality analysis made practical. In 2017

IEEE Conference on Visual Analytics Science and Technology (VAST), pp.
151–161. IEEE, New York City, NY, 2017.

[48] C. Zhang, B. Chen, and J. Pearl. A simultaneous discover-identify ap-
proach to causal inference in linear models. Technical Report R-491-L, url
= http://ftp.cs.ucla.edu/pub/stat ser/r491-L.pdf, Department of Computer
Science, University of California, Los Angeles, CA, 2019. Extended
version of paper accepted to the Proceedings of the Thirty-fourth AAAI
Conference on Artificial Intelligence (AAAI-2020).

[49] J. Zhang. On the completeness of orientation rules for causal discovery
in the presence of latent confounders and selection bias. Artif. Intell.,
172(16–17):1873–1896, Nov. 2008. doi: 10.1016/j.artint.2008.08.001

[50] X. Zheng, B. Aragam, P. Ravikumar, and E. P. Xing. Dags with no tears:
Continuous optimization for structure learning, 2018.

https://doi.org/10.1016/j.artint.2008.08.001
https://doi.org/10.1016/j.artint.2008.08.001
https://doi.org/10.1016/j.artint.2008.08.001
https://doi.org/10.1016/j.artint.2008.08.001
https://doi.org/10.1016/j.artint.2008.08.001
https://doi.org/10.1016/j.artint.2008.08.001
https://doi.org/10.1016/j.artint.2008.08.001

	Introduction
	Motivation

	Related Work
	Graph Comparison for Causal Discovery
	Graph Comparison Visualizations
	Shared Controls
	Broad Comparison View
	Focused Comparison View

	Example Workflow
	Discussion
	Future Work
	Conclusion

