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Fig. 1. Natto Interface. A - The Tree Viewer Pane shows a consensus tree from multiple data sources. B - The Model Canvas Pane
shows an analytic data model that the user is in the process of constructing. The nodes selected in the tree are added to the Model
Canvas Pane and shuffled between user-defined concept cards. C - An export option to download the analytic data model and its
corresponding data. D - Automatically generated suggestions for nodes to include in the conceptual model that correspond to the
contents of the Model Canvas Pane. E - Univariate visualizations of selected data containing leaf nodes.

Abstract—Data analysts need to routinely transform data into a form conducive for deeper investigation. While there exists a myriad of
tools to support this task on tabular data, few tools exist to support analysts with more complex data types. In this study, we investigate
how analysts process and transform large sets of XML data to create an analytic data model useful to further their analysis. We
conduct a set of formative interviews with four experts that have diverse yet specialized knowledge of a common dataset. From these
interviews, we derive a set of goals, tasks, and design requirements for transforming XML data into an analytic data model. We
implement Natto as a proof-of-concept prototype that actualizes these design requirements into a set of visual and interaction design
choices. We demonstrate the utility of the system through the presentation of analysis scenarios using real-world data. Our research
contributes novel insights into the unique challenges of transforming data that is both hierarchical and internally linked. Further, it
extends the knowledge of the visualization community in the areas of data preparation and wrangling.

Index Terms—Data Modeling, Data Analysis, Hierarchical Data

1 INTRODUCTION

Data scientists and business analysts routinely transform data into a
suitable shape for answering their pertinent analytic questions [6].The
data is often stored as pre-defined data models that are developed to
support organizational practices [15, 17]. However, these pre-defined
data models do now always align with needs of these individual data sci-
entists and analysts, thus necessitating the data be further transformed
for each analytic question [6]. When undertaking these data model
transformations, analysts are confronted with the challenge of both
understanding the existing structure of the data [32] and modifying it to
appropriate transformations [38]. This transformation process is often
iterative and requires the analyst to construct and consider multiple
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alternatives before arriving at a model conducive for data analysis [37].
The challenges of carrying out these data transformations are especially
cumbersome for non-tabular data types that form a smaller, but still siz-
able portion of business data [41]. In addition, few data analysis tools
and visualization systems provide support for non-tabular data [5, 54].

We observed these challenges while working with domain experts
seeking to analyze data from XML documents. Compared to tabular
datasets, XML data and other similar data types like JSON or YAML,
contain pertinent hierarchical and internally linked data relationships.
These additional properties can make the process of understanding,
transforming, and evaluating data, complex. Motivated by these chal-
lenges, we conducted a formative design study with these domain
experts to better understand the challenges they face, their objectives in
their analyses, and to identify a set of design requirements to address
their unmet needs. We set out to surface how analysts created these
‘analytic data models’ from existing data models to address a specific
data question. We especially highlight the challenges of conceptualiz-
ing what form the data must take, relative to existing structure, in order
for an analyst to achieve their analysis goal [35].
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The goal of our design study is to investigate how analysts transform
XML data or more generally data that is hierarchical and internally
linked, into an analytic data model. We were especially interested to
capture these transformations from a common initial dataset in order to
examine if and how their strategies for preparing and transforming these
data differed. We conducted interviews with four domain experts that
were using a common dataset of XML documents to conduct analyses
for different data questions.

We present three contributions in this paper. First, we provide a
working definition of analytic data models and differentiate from that
of existing data models. Second, we present a formative design study
that identifies the goals, tasks, and design requirements for understand-
ing how an existing XML based data model can be transformed into an
analytic data model. Third, we present the Natto prototype that enables
visual and interaction design choices for iteratively creating analytic
data models from XML (and other hierarchical) data. Our research
brings together existing techniques from databases, knowledge engi-
neering, and visualization research to present a novel user experience
for transforming data that is both hierarchical and that also contains
linkages within this hierarchical structure.

1.1 Existing vs. analytic data models

Our research highlights how analysts must routinely explore an existing
data model ahead of carrying out data transformations to prepare their
data for analysis [6]. We referred to the former as existing data models,
which largely serve organizational needs, while the latter are analytic
data models, which address a specific data question.The existing data
models are reified from a pre-determined schema established to support
organizational practices [15, 17]. Analytic data models manifest at the
end of a series of transformations from the existing data model. While
the importance of carrying out these transformations is understood
in the research literature [16, 29, 47, 59], there has been a paucity of
research that addresses the needs of analysts concerning non-tabular
data. Existing research also does not explore the tension that exists
when data models do not align with individual analysis goals.

We argue that such types of transformation from one existing data
model to a new one more suitable for analysis (the analytic data model),
are not well understood or supported by existing data preparation and
wrangling tools. Here, we highlight this data model transformation
process and in particular, the conceptual work the analyst must per-
form to develop this analytic data model. We do so by describing the
challenges, approaches, and failures that a domain experts faced when
examining a common dataset of XML documents and attempting to
derive analytic data models for different data questions. Even while
analysts with programmatic capabilities were able to extract, transform,
and load a new data model into their analysis tools, the process was
often tedious and time-consuming. One particular challenge of the
transformation process and one we see as being overlooked by existing
tools, is the conceptual component where the analyst plans that delin-
eation between the existing data model to a new data model for analysis.
This conceptual component requires that the analyst considers both the
data and how it should be shaped relative to some analytic goal. Our
use of the term ‘analytic data model’ is intended to capture both the
conceptual and data transformation processes involved in exploring,
conceptualizing, extracting, and transforming data from an existing
data model into an analytic form.

2 RELATED WORK

We discuss prior research in data modeling, data preparation, and tools
for visualizing hierarchical data.

2.1 Data Modeling

Data modeling is fundamental to the process of analysis and design
methodologies for the development of information systems [58]. Con-
ceptual modeling facilitates the early detection and correction of system
development errors and is often performed prior to data analysis [26,63].
Conceptual modeling formalism such as Entity-Relationship (ER) mod-
eling [14] is commonly used for structured analysis. The ER approach

provides an intuitive model of entities and their relationships, allow-
ing for translation into a database schema [19]. However, relational
data models can be inflexible to changes in data [24] and struggle
with more complex data relationships including hierarchical [49] and
linked data [33]. Other research in conceptual modeling focuses on
the use of ontologies for developing, comparing, and improving data
models [8, 53, 62]. Mayadewi et al. [40] explored the process of trans-
forming a relational database into an ontology model by extracting
hidden semantics from a relational model.Ontologies share common
canonical structure and properties to hierarchical markup such as XML,
especially around conceptual modeling, inheritance, and inference
mechanisms [20, 33].

The simplicity and flexibility of XML has led to its adoption for pro-
viding a broad range of high quality information. Relational databases
(RDB) are a common mechanism for storing and querying the content
of XML data. Researchers have proposed techniques to map XML data
into a relational schema of an RDB [43, 60]. Further improvements in-
volve automation [36] and developing more performant techniques [50].
Boukottaya and Vanoirbeek [9] focus on XML document schema match-
ing and its reuse for mapping transformations. Others have developed
techniques [42, 51] where domain experts could reverse engineer data-
centric XML schema from their conceptual models so that changes can
be propagated for consistency.

Our research explores ways that analysts can use visual interfaces
to specify an analytic data model. We posit that visual interfaces are
an effective way to allow individuals both with and without knowledge
of the data model to be able to intuitively transform the model for
analysis. Specifically, we build on prior work to help analysts explore
the structure and content of existing data and use this knowledge with
automated support.

2.2 Data Preparation
Data preparation (prep) is often an arduous process for transforming
data into a form suitable for analysis and is underserved by existing
visualization and analysis tools. [30, 48]. Various ideas have been
proposed that include visual approaches to aid with data wrangling
and integrate with automated approaches to allow an interactive editing
cycle [21, 28, 38]. These techniques become more complicated with
complex data ingest pipelines [57].

Several works of research have focused on developing tools to help
users with various aspects of the prep process. Zernichow and Ro-
man [61] developed a data profiling tool that identifies and visualizes
potential data quality issues, relevant data cleaning functions, and an
interactive spreadsheet view. Potter’s Wheel [45] allows users to grad-
ually build transformations to clean the data by adding or undoing
transforms in a spreadsheet-like interface. Wrangler [29] combines
direct manipulation of visualized data with automatic inference of rel-
evant transforms, enabling analysts to iteratively explore the space of
applicable operations and preview their effects. Other wrangling-by-
example systems include Foofah [27] and recent work on multi-table
wrangling [31]. While these tools focus on tabular data, people in-
creasingly analyze non-tabular data, including time-oriented [3, 23],
traffic [1], and network data [5, 25, 39, 55]. There are also methods that
exist for flagging statistical anomalies in electronic dictionaries stored
in XML format [7]. Other work automates the wrangling process by
incorporating data context in the target schema focusing on mapping
validation, value format transformation, and repair [34].

Our research extends this work by exploring data transformation ap-
plied to XML data and the process of transforming from a hierarchical
to a tabular data representation.

2.3 Exploring XML and other Hierarchical Data
A relevant aspect to our work is the suite of software tools for explor-
ing XML schema through visual user interfaces. Previous research
has focused on the composition relationships in an XML Schema doc-
ument by providing a tree view that displays related data types and
elements [10, 12]. Data transformation problems are very common and
are challenging to implement for large and complex datasets. Robertson
et al. [46] demonstrated the use of visualization techniques to help users
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deal with schema matching, particularly for large, complex information.
Clip [44] is an XML Schema mapping tool where the mappings explic-
itly specify structural transformations in addition to value couplings.
Other work described an approach for specifying data mapping trans-
formations between XML schemas using a combination of automated
schema analysis and selective user interaction [2]. Recently, visualiza-
tion tools have focused on representing hierarchical information such as
ontologies using indented lists, node-link graphs, Euler diagrams, and
tree maps. Vispedia* is an early example of a tool where models shared
data as a semantic graph to enable search and discovery of datasets
with different underlying data models [13]. CAVA similarly constructs
a knowledge graph over relationship data to augment data analysis [11].
The tools display hierarchical relationships between entities, showing
details on demand [18]. Other work explored multiple coordinated
views for displaying ontologies in XML format [52].

A limitation of these existing tools is that they do not address scenar-
ios where the analyst must both explore and transform data from one
data model format to another. We implement a prototype tool, Natto
that tackles this problem most directly, while taking inspiration from
prior systems, Vispedia* and CAVA, to create a visual and interactive
user experience.

3 DOMAIN CONTEXT AND DATA DESCRIPTION

Our design study was carried out in collaboration with domain experts,
all at the same business intelligence technology company. In this
section, we describe their domain context and the characteristics of
their XML documents. We also present a usage scenario to articulate
what is captured by the XML data model and how it can be analyzed.
Domain Context and Challenges. We worked with experts that
needed to analyze stored data pertaining to a set of XML documents
in the visual analysis tool. The existing data model for the XML docu-
ments was defined by software engineers and as such was optimized
to support the loading of these documents into the tool. When an end-
user uses this visual analysis tool to conduct an analysis, the data are
stored within this XML document. The types of data stored varies from
automatically generated system settings (for example, the software
version, the sizes of elements in the display) as well as user generated
content (for example, the specific fields being visualized and the way
the end-users choose to visualize them). An analyst seeking to examine
how end-users use the tool, can gather and analyze these documents,
extracting data relevant to a particular question. For domain experts
that we worked with, the data that was especially interesting to them
was user-generated content, which tended to be stored in leaf nodes of
the existing data model.

A particular feature of this XML document was that it contained
redundant and nested elements to store data. Fig. 2 illustrates an
existing XML data model with redundant subtrees encoding similar
elements (worksheets), but storing different data. For example, an
end-user seeking to visualize their data using this visual analysis tool
can create several worksheets, each showing a different slice and visual
representation of the data. On the first worksheet, they might compare
the prices of two hypothetical widgets A and B using a line chart.
On a second worksheet, they might calculate and evaluate the total
production of just widget A over time. These actions are captured
and stored in the XML document as separate sub-trees within the
XML document. We found that this tree structure made it difficult
for analysts to explore, extract, transform, and analyze data. Simply
parsing the XML document proved not be enough; the transformations
that analysts had to undertake to make the data usable for analysis,
went beyond beyond operations like joining, filtering, grouping, or
other transformations [28]. The sources of these challenges were
two-fold. First, it was not easy to explore the existing data model and
tools like XML viewers were too limited to address their needs. For
smaller documents containing a limited amount of data, this issue is
not substantial. However, the XML documents that our domain experts
had to analyze, were large and dense tree because they are intended to
support a fairly complex piece of visual analysis software. Second, the
hierarchical schema representation made it difficult to quickly apply
analytics techniques from standard analytic tools, such as Microsoft

Excel or Tableau, or programmatic libraries, such as Pandas [64] or the
tidyverse suite [65].

3.1 Data Description and Abstraction

Existing Data Model Structure. The existing data model defined by
XML schema is a tree representation, containing interior and leaf nodes
(Fig. 2). This tree representation is also internally linked, meaning
that a common data field appears in multiple nodes throughout the
tree. More specifically, the visual analysis tool has multiple worksheet
interfaces where people can add, view, and modify data leading to
multiple nodes in the underlying XML structure. Within the XML
structure, these worksheets are represented as parallel and separate
subtrees, but these subtrees can also have relationships between them
facilitated by overlapping data in the worksheets (Fig. 2). During the
study, experts wished to navigate this tree, identifying and reorganizing
both interior and leaf nodes to support their data analyses. While
subtree relationships were interesting to the domain experts, they were
tedious to discover and difficult to extract with existing analysis tools
or libraries.
Data Model Consistency. An important consideration of working
with XML data concerns changes to the tree structure over time. The
changes naturally occur as the software changes either because new
features are added or because better and more efficient ways to store
the data emerge. These changes to the data model over time are not
unique to XML, but apply to relational data models as well. However,
the tree structure of XML data models introduces new challenges that
pertain to harmonizing this hierarchical structure over time [44, 46].
We did not have to address this particular issue in our work as we had
at our disposal tools that were internally developed to ameliorate these
differences in this data model over time. As a result, we were able to
work with a common tree format in this design study. We also note
that challenges stemming from normalizing XML documents into a
common format is an ongoing and challenging research problem that
we do not address.

4 ANALYST EXEMPLARS

In this section, we describe the objectives, process, and pain points
in the exemplars solicited from interviews with four domain experts,
henceforth referred to as analysts. These analysts add specificity to the
fictitious usage scenario we described in the previous section. We detail
the interview process and how this informed our subsequent goals,
tasks, and requirements, as well as the visual and interactions design
choices in the Natto prototype.
Overview. We identified four individuals, two that were actively an-
alyzing the data and two others that had attempted to do so, but hit a
failure mode and gave up. We arranged an initial interview asking them
to describe their data questions and then provide a walk through of their
process of identifying, extracting, and shaping data for analysis.We did
not have a specific interview protocol, but took screen recordings and
kept notes of our sessions with participants. Each session was approxi-
mately an hour in length. For individual’s that reached failure modes,
we sought to understand what those barriers were. Exemplars I and
II represent individuals that had knowledge of the existing XML data
model and had specific analytic questions. Exemplars III and IV rep-
resent individuals that had little knowledge of the existing data model,
but wanted to explore the data to assess whether it was suitable for
their more general analysis goals. These latter two exemplars reached
failure points from their lack of familiarity with the existing data model.
Exemplars also vary with respect to the crispness of the individuals
objectives, with Exemplar I presenting the most crisp objectives and
Exemplar IV presenting the least. From these sessions, we derived
tasks for preparing and transforming data.

4.1 Exemplar I: Examining Text Content
A senior data scientist sought to investigate user-generated text content.
They had no prior knowledge of the existing XML data model, but had
invested the time to get familiar with the data model. They created
a visual overview of the data using Code Beautify XML viewer
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</workbook>
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Removes redundant subtrees 
for a simplified representation
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Stores values of the tree nodes that can quickly accessed. Leaf 
nodes tend to have values, whereas internal nodes generally do not.
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A graph that derives linkages between nodes based upon 
shared ancestry and data content. 
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dashboards

worksheet1

worksheet2

worksheet3

dashboard1

dashboard2

datasources

Existing linkage from XML tree ancestors

Derived linkage from shared data content

Existing Data Model Intermediary Derived Data

datasource1

Node ID Node Name Tree Level Value

fDRWgUVgy6 worksheets 0 null

0Y5iJMeyXJ dashboards 0 null

WBZ9pR3ab4 datasources 0 null

94hjHUxh44 worksheet1 1 null

X2unw0oBrz worksheet2 1 null

k6Iz9-qZNA worksheet3 1 null

yuabLgs-kI dashboard1 1 null

76Zh_Ac3eI
 dashboard2 1 null

K8uilKxskq datasource1 1 null

z0wcu5mECL rows 3 [widgetA, widgetB]

JnpBP1X-_i columns 3 [price]

EOERZLSWhC
 encoding 3 point

cFCOGYuVLA
 rows 3 sum[widgetA]/
[totalWidgets]

v9cT2rzVZO
 columns 3 [date]

jwQosS8Vcu encoding 3 Bar

V2SuteItEb worksheets 3 worksheet1

t0E6BKz8Lu columns 3 [widgetA,widgetB, 
widget C,  date]

Fig. 2. Illustration of XML data and intermediary derived by Nattoto support the creation of analytic data models.The XML data that we consider,
contains many repeated elements (i.e. multiple worksheets),making it a slow processes for an analyst to traverse the XML Tree to extract and
re-organize data for analysis. To expedite the analyst’s workflow, Natto derives three data structures from the XML data: a consensus tree, a flattened
data table, and a graph representing content similarity between nodes of the consensus tree. The derived data is used to simplify the analysts’
navigation of the data hierarchy and for Natto to provide suggestions to the analyst.

(https://codebeautify.org/xmlviewer) and would browse or
look up tags and attributes using the tool’s search feature. As they
examined the tree, they used a generic text editor to keep track of
useful nodes they identified. They would subsequently examine
a random sample of XML document in Python, extracting data
from the nodes they had previously identified. They then performed
a visual assessment using univariate data distributions. They further
experimented with this data using various machine learning techniques
to cluster the data. As they reviewed the results of the machine learning
modeling, they made further revisions to the analytic model, which
included identifying new nodes of interest, extracting the data, and reap-
plying their machine learning analysis. This iterative flow progressed
through several cycles and in the process, the analyst sketched an
evolving analytic data model. They subsequently used this analytic data
model to transform from the existing XML structure to a new tabular
format for machine learning analysis.

We observed several pain points in this process. The first, was the
difficulty of stitching between different tools and libraries to view the
data, extract, and analyze. Second, was the challenge of orienting
themselves within the data in order to develop an analytic data model.

4.2 Exemplar II: Exploring User Strategies

A research consultant sought to ascertain how often users created mul-
tiple linked views when using the visual analysis tool. This individual
was much more familiar with the existing XML data model compared
to Exemplar I. However, they employed similar strategies, including
the use of a XML browser, in this case Microsoft Notepad, to have a
visual overview of the data. They also used the viewer to browse,
identify, and look up data of interest. They extracted the data
and used Tableau Desktop, their analysis tool of choice, to view and
examine its contents and similarly produced univariate graphical sum-
maries. However, this individual also summarized this data into a
dashboard showing the connections between different nodes of the
XML tree they were interested in. The dashboard organization not
only helped orient them but helped to visualize connections
between related content such as data about the visual encodings. We
also noted that the dashboard content was grouped and organized to
resemble the analyst’s mental model of the data, for example, they
organized content from different parts of the XML tree to summarize
the visual encodings created by different end-users and the ways that
they were linked.

Exemplar II experienced similar pain points as Exemplar I regarding
the movement of data between multiple tools and orienting within
the existing data model. In both instances, the ability to visualize

and examine the existing model was important, as was the ability to
progressively sketch out the analytic data model.

4.3 Exemplar III: Assessing the Breadth of Test Coverage
A senior product manager wanted to explore additional sources of data
for assessing the breadth of their feature team’s test coverage for the
visual analysis tool. They wished to make a quick assessment before
investing additional time and resources into this problem. They made
initial attempts to examine the XML data on their own, but ultimately
hit a roadblock. Instead, the exemplar relied on another individual to
help them identify and extract data that they needed. Unlike the prior
exemplars, their data question was more open-ended and exploratory,
reflecting an “I’ll know it when I see it” mentality, rather than the desire
to identify and examine some specific aspect of the data. Still, their
objectives were to browse and identify useful data within the XML
documents to inform a conversation with their development team.

This exemplar revealed pain points surrounding the ‘cold start’ prob-
lem - while they had a rough goal in mind, they did not know where
to begin to assess and transform the data model. We also surfaced the
pain point of requiring someone who was versed in the data to orient
them and potentially identify points of interest.

4.4 Exemplar IV: Data Provenance
A senior manager wanted to modify the existing data model in order to
better support a feature of the visual analysis tool. They wanted to have
a sense of how this modification could be incorporated into the existing
data model and also to analyze some of its possible downstream effects
on end-users. They were only slightly familiar with the existing data
model and efforts to make changes, but had not extensively explored
this model on their own. Similar to Exemplar III, their data question
was fluid and depended on an evolving understanding of the data. They
wished to make a similar quick assessment of whether the dataset
could answer a particular question and if the underlying data could be
used to further support ideation on change provenance more generally.
Like the previous exemplars, they needed to easily orient themselves
in the existing data model, perform look-ups for the proposed changes,
and explore and analyze potential side effects of enacting such a
change. We concluded that the pain points for this exemplar were
similar to that of Exemplar III.

5 TASKS, GOALS, AND DESIGN REQUIREMENTS

From the exemplars, we derive a set of design goals to help inform
the implementation of Natto. We particularly focused on goals (G#)
and associated sets of tasks (T#) that help support the creation of an
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analytic data model from an existing data model that is hierarchical and
internally linked.
G1: Understanding and exploring existing data models. All exem-
plars began with an overview (T1) of the existing data model repre-
sented by the XML hierarchical tree structure to inform their analyses.
This overview helped them to understand the type of data that was
available or absent for analysis. In Exemplars I and II, the overview led
to a targeted exploration of the hierarchical structure to lookup (T2)
and identify (T3) useful data. The exploratory processes of Exem-
plars III and IV were oriented toward serendipitous browsing (T4)
of the existing data model to triage potentially useful data. Critically,
all individuals needed support to orient (T5) themselves within their
exploration of the existing data model and as they created their analytic
data models. We note that while analysts found the overview of the ex-
isting data model helpful, they did not need to interact with a facsimile
of it. In fact, it would be helpful for them to interact with a version that
removes redundant or non-informative tree elements.
G2: Creating a meaningful representation of an analytic data
model. Exemplars I and II presented the strongest evidence that experts
iteratively create an analytic data model as they explored the exist-
ing data model. From the existing data model they progressively
added nodes (T6) from the XML tree into some scratch environment,
actual sketches in Exemplar I, or a dashboard in Exemplar II. Over
time, they would group these nodes (T7) into some semantically
meaningful concepts that aligned with their data questions and analytic
objectives. Exemplars III and IV struggled to create an analytic data
model on their own; they relied on conversations with an intermediary
to understand the existing data model and describe how they would
need the data transformed for their data questions. Across all of these
exemplars, surfacing links (T8) between nodes of the data hierar-
chy was important and also difficult. An example of this is the analyst
in Exemplar I who sought to surface and extract text data from the
existing data model. It would be helpful if there was automated support
for this process to remove their current manual exploration. This latter
task is tightly coupled with data orientation (T5).
G3: Examining underlying data. Having a snapshot of the under-
lying data is useful to assess the data’s utility in downstream anal-
ysis. From Exemplars I and II, we determined this could be per-
formed effectively via the assessment of univariate summary
statistics (T9). While more complex analyses could be carried
out, it is challenging for one tool to anticipate and support these more
complex analysis paths, but an initial univariate summary appeared to
be useful starting point [67].
G4: Exporting Data to Analysis Tools. Finally, the goal of experi-
menting and trying different analytic data models depends on the ability
to easily export (T10) the underlying data. Data should be exported
to align with the analytic data model that experts have created.

Furthermore, our exemplars suggest a set of design requirements.
The first requirement is accessibility for analysts that vary in famil-
iarity with the existing data model (R1). In our exemplars, we noted
that level of familiarity related to the tasks that analysts performed.
Those with greater familiarity, spent more time performing targeted
browsing and look-up tasks. Those with less familiarity, spent more
time browsing, but also reached out to other people for support. An-
other requirement was the ability to support iterative refinement of
data questions (R2) as not all end-users have a clear goal at the out-
set of their investigation. Finally, the system should have sufficient
capabilities to limit transitioning between multiple tools (R3). This
indicates that some data transformations between the existing and an-
alytic data models should be handled within a common tool without
having to constantly switch.

6 Natto
In this section, we describe the Natto prototype including both its visual
and algorithmic design choices. Our design processes considered both
the visual elements needed to support the creation of the analytic data
models and the data transformations necessary for analysts to interact
with the data. The Natto prototype is an interactive tool that enables an

analyst to create an analytic data model from an existing data model.

6.1 Derivation of Intermediary Data
We derive three intermediary datasets that are used by Natto to ground
the analyst’s understanding in the existing data model and to help them
create a new analytic data model. The data is a Consensus Tree, a
Flattened Data Table, and a Data Graph. This XML document could be
parsed by standard methods existing many of the analysis and database
tools used by analysts (e.g, Tableau Prep, Python, R, or Javascript
Libraries). However, analysts still needed to apply rather intensive
transformative operations to create an analytic data model. We derive
these intermediary data structures as a way to scaffold this process
for supporting the design requirements (R1 - R3) articulated in the
prior section. We describe their derivation in Algorithm 1 and show a
simplified illustration of the data and this process in Fig. 2:

Algorithm 1 Pre-process (XD)
Input: Directory of XML documents(XD)
Output: Consensus Tree (C), Flattened Table (F), Data Graph (G)

1: (C,F)← NULL
2: for x in XD do
3: (C′,F ′)← traveseXML(x)
4: (C,F)← getConsensus(C,C′,F ,F ′)
5: G← dataGraph(C,F)
6: return(C,F ,G)

Creating a Simplified Tree Structure. The first step constructs a Con-
sensus Tree (C) derived by consolidating the trees within individual
XML documents (C′). While prior research proposed more complex
grammars and algorithmic approaches [2,4,9,44,46] to reconcile XML
schemas, the schemas in our dataset were sufficiently similar despite
small variations (see Section 3.1). We could hence take a simpler
approach using a standard depth-first tree traversal. Our approach
(travseXML) is similar to the one taken by Basic Inlining Technique
described Shanmugasundaram et al. [49], which constructs both a graph
and relational representation through a depth-first tree traversal. We re-
mind the reader that a trivial tree traversal approach is possible because
we leveraged existing tools for harmonizing across potential differ-
ences that may result from changes to the tree structure (Sect. 3.1).The
travseXML essentially produces an intermediary data structure that
stores a particular path in the tree and the data that it contains. The ma-
jority of data that our analysts cared about were stored in the leaf nodes
of the trees because it contains more specific user generated content.
The tags of the XML tree elements contained additional contextual data
that were important for the software application, but were generally
less interesting for analysis. The contextual data could be added in
future interactions in a similar way that we add leaf node data.

The getConsensus algorithm traverses a single C′ and determines
whether a particular path in the XML tree has already been seen in
C; if so, that path is not added to C as it is considered a redundant
tree element; if the path is new, then it is added. This process of
progressively adding new paths allow us to create consensus tree that
helps analysts explore a simplified representation of the tree structure
that addresses challenges of redundant tree elements (Section 3) and
is intended to allow analysts to get an easier overview of the existing
data model in order to explore it (G1; T5). In parallel to this traversal
process, our algorithm identifies whether the tree node contains any
data, which can be of type string, numeral, or Boolean. If the node
does contain data, then its lineage is stored in a table along with the
automatically detected data type and its value. This table is also updated
over time to become a flat data file (F). These methods are not novel,
but compared to prior work in data preparation and wrangling (see
Section 2), which focused predominantly on tabular data, our approach
affords a novel interaction to create an analytic data model.
Surfacing Internally Linked Nodes. To help analysts discover link-
ages between data nodes (G2; T8), we also derive a data graph. In
Section 6.2.3, we describe how this graph is used to generate sugges-
tions for the analyst; here we only detail the construction of this graph.
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While graph and tree representations have been used in the past to
visually link changes between XML trees [2, 22], our use of these data
structures to both orient and motivate data transformation, is novel.
We have defined a similarity metric to quantify the similarity of data
containing nodes. The development of this metric is motivated by the
goals, tasks, and requirements expressed in our exemplars:

Si j = wp ∗Pi j +wd(Di j ∗Ti j) (1)

The similarity metric Si j compares the proximity (P), data type (T ),
and shared data (D) between two nodes (i and j) in C. These values are
summed in a weighted combination with the default values for weights
wp and wc set to 0.3 and 0.7 respectively, assigning the greatest weight
to connections derived from shared data. The final value of S is used to
establish edges between two nodes in the XML tree, essentially adding
links between the tree nodes; in fact, this graph+tree result inspired the
system’s name, as it reminded one of the authors of the sticky tendrils
of the namesake Japanese snack.

Proximity is determined by the number of shared common ancestors;
the more shared ancestors, the larger the value of P. We include
proximity in the metric so that analysts can still consider useful nodes
in their analytic data model without having to constantly consult the
Consensus Tree. Next, the metric considers the shared data between
two nodes. If these nodes have different data types (string, numeral, or
Boolean), the right half of the equation becomes zero. If two nodes have
the same data type, our algorithm computes a value for D and T . For
integer and Boolean data, D = 1, since these values are not sufficiently
specific to differentiate data similarity. For string data, D is the Jaccard
similarity. We use the Jaccard similarity as it best allows us to detect
the same string embedded within a larger string. For example, the string

‘widgetA’ could also be easily identified with a comparative string that
represents a calculation: ‘sum[widgetA]/[totalWidget]’. Finally, as the
data type does appear to be important (e.g., an analyst wanting to find
all text data), we included a weight to account for data type, T . We
assign defaults values for T at 0.01, 0.5, and 1.0 for Boolean, numeric,
and string data types respectively. Finally, these values are summed in a
weighted combination with the default values for weight wp and wc set
to 0.3 and 0.7 respectively, giving the greatest weight to connections
derived from shared data. We prioritize shared string content in our
similarity metric as we found that shared strings are less likely to result
in spurious connections between tree nodes. The default values for
wp,wc, and T were determined through iterative testing and discussion.
We also enabled analysts to change these settings in the Natto interface.

The values of S are used to establish edges between internal and leaf
nodes of the XML tree (Fig. 2). By default, S > 0 produces an edge,
however, the Natto interface also allows analysts to set a new threshold
for S and dynamically recompute the data graph’s edges.

6.2 Visual and Interaction Design
Natto (Fig. 1) enables analysts to progressively construct an analytic
data model. We describe the five components of this interface: the
Tree Viewer, Model Canvas, Export, Suggestions, and Data View Panes.
Once again, we link our design choices and alternatives we considered
to exemplars goals (G#) and tasks (T#).

6.2.1 Tree Viewer Pane
The Tree Viewer Pane visualizes the Consensus Tree derived from the
initial XML data source (see Section 6.1 for details). The analyst can
interact with the tree in several ways to both understand and explore the
structure of the existing data model (G1) and construct a new analytic
data model (G2); examples of these interactions are shown in Fig. 1. The
Consensus Tree representation removes redundant elements existing
in the raw data and enables the analyst to engage more easily with the
hierarchy and data within the XML data. We preserved this hierarchy
as our discussion with analysts showed that at a high level, it matched
the user’s mental model, providing an effective overview (T1). The
higher levels of the tree help analysts browse (T4) and look up (T2)
elements of the leaf nodes. To browse the tree, an analyst can expand
and contract the different nodes of the tree to identify (T3) relevant
nodes for them to add to their analytic model. However, browsing the

Fig. 3. Examples of two concept cards in the Canvas Pane, the default
‘unassigned’ and an analyst generated ‘dashboard text’ card. An analyst
can drag nodes between concept cards.

dashboards | dashboard | zones | zone | text_runs | text run

A. Breadcrumb design alternative

B. Breadcrumb final design

dashboards |…| zone| text_runs | text_run

text_run

Fig. 4. a) An interaction-based breadcrumb design alternative that was
considered, but ultimately discarded and b) the final breadcrumb design.

tree by this mechanism can also be slow and can impose a cognitive
burden on the analyst to keep track of what parts of the tree they have
explored or not. We address this limitation by enabling the analyst to
perform a quick look-up (T2) and highlight selected elements of the
tree to help orient them (T5).

6.2.2 Model Canvas Pane
The Model Canvas Pane is intended to support analysts in their concep-
tualization of an analytic data model [14, 27, 63]. This pane enables an
analyst to visually and interactively add and reorganize nodes in the
original XML so that they can export a transformed data model for use
in downstream analysis. Nodes can be added to the canvas from either
the Tree Viewer or Suggestions Panes (T6); the analyst may select an
individual leaf node or an entire subtree to add. Similarly elements
can be removed by deselecting items in the Tree Viewer. Nodes added
to the Canvas Pane are organized into ‘concept cards’ (Fig. 3), which
follows from the user requirements of organizing elements of their
analytic data model into semantic representations that are meaningful
to them (G2; T7). Initially, there is only one concept card simply titled
‘unassigned’, but the analyst is able to add new concept cards on the fly,
as shown in Fig. 1 and Fig. 3. When the analyst wishes to export their
model (T10, G4) these concepts cards are used to define a set of tabular
data outputs, transforming the initially XML data into a tabular format
that is amenable to common data analysis tools.

In the initial versions of this prototype, only the node name was
displayed in the canvas view, but we saw this representation as poten-
tially disorienting given that names were repeated through the XML
tree (by extension the Consensus Tree as well). This meant that the
analyst could not always distinguish what they had placed onto the
Canvas Pane. We introduced a ‘breadcrumb’ label to provide a sense of
orientation (T5). Through an analysis of the Consensus Tree structure,
we established that the breadcrumb label would be sufficiently unique
if it contained a root node and a grandparent node (i.e., ancestral nodes
that immediately proceeded the current node in the Consensus Tree)
along with the node’s own name. We use these breadcrumb labels for
both the Canvas and Suggestion Panes.

In the Export Pane, the analyst can export their data into a single
tabular data file with concepts card titles added as new categorical
columns in the resulting table, or they may export multiple tables, with
each table pertaining to one concept card (G4; T10).

6.2.3 Suggestions Pane
To further help the analyst discover elements they wish to add to their
data model, Natto automatically generates suggestions in the Sugges-
tions Pane. In Fig. 5 we show an example: the elements in gray reflect
nodes in the Canvas Pane, each pertaining to text data (e.g., name, title)
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A. Items in canvas view

B. Suggestions generated by Natto

Fig. 5. Example suggestions generated by Natto in response to three
nodes in the Canvas Pane. Here Natto suggests related fields in a part
of a dashboard that the user has not yet added to the Canvas Pane.

Algorithm 2 Suggestion Algorithm (V ,G)
Input: Snap Shot of the Canvas Pane (V ), Data Graph (G)
Output: Ranked List of Field Suggestions (R),

1: (R,F)← NULL
2: for v in V do
3: append getNearestVertex(v,G) to R
4: ( f ield,count)← distinct(R)
5: R← sort field by count in order = descending
6: return(R)

in different subtrees of the Consensus Tree (e.g., worksheets, stories).
Using these three items in the Model Canvas Pane, Natto provides
suggestions, in ranked order, with up to five nodes in the Consensus
Tree. The top-ranked node here is from the dashboards subtrees and
also relates to title data. The objective of the Suggestions Pane is in-
tended to support analysts that are both familiar and new to the existing
data model by expediting their process. The Suggestions feature also
supports those who are less familiar with the existing data model(G1).

In Algorithm 2, we show the processes of computing these sugges-
tions on the fly. As the analyst creates their data model in the Canvas
Pane (V ), Natto periodically executes a task that takes a snapshot of V
to generate suggestions. Each node in V contains a unique identifier
that maps to the pre-computed data graph G (see Section 6.1 for details
on how G is generated). For each node in V , Natto looks up its nearest
neighbor in G and returns the result. The results are tabulated and
rank ordered according to the number of nodes in V that share a com-
mon neighbor; the more overlap, the higher the rank of the suggestion.
This ranked list is displayed in the Suggestions Pane and the user can
add these nodes to the Canvas Pane simply by clicking on any of the
suggestions. As we described in Section 6.1, some of the similarity
computation that underlies the construction of G has elements that
are modifiable by the user; the user can access these options via the
Suggestions Pane (see Fig. 1).

6.2.4 Data Viewer Pane

Finally, the Data Viewer Pane visualizes a univariate summary of nodes
in the Model Canvas Pane ( Fig. 6). Not all nodes within the XML
tree contain data that can be visualized; some nodes just add context
to the hierarchical relationships of data that is stored. In general, leaf
nodes of the XML tree contain data and can be helpful for analysts
to get a glimpse of this data while conceptualizing their analytic data
model( G3;T9). As already described earlier (see Section 6.1), there
are different data types stored within the XML tree and these types are
treated differently when being visualized. Numeric data is visualized
as a histogram. Both string and Boolean data are visualized as bar
charts. String data is treated as nominal data and as such can impose
a high categorical cardinality. To address issues of cardinality, we

limit the bar chart to contain at most the top 20 categories by the
frequency of occurrence. Moreover, Natto automatically generates
and displays subtitles that inform the analyst of the total number of
categories actually shown in the visualization. In Fig. 6, we show an
example of a visualization produced by Natto showing string data with
255 unique categories; the visualization shows the top 20 common
categories (in this case, text containing the work ’state’ is the most
common) and creates a caption to indicate to the analyst what the total
number of categories are.

Fig. 6. Example of a univariate summary plot for a string (nominal) data
corresponding to a leaf node in the Consensus Tree. Natto automatically
generates a caption stating the total number of categories, displaying at
most the top 20 categories by prevalence.

7 APPLICATION SCENARIOS

We present a preliminary demonstration of Natto’s capabilities based
upon the exemplars described in Section 4. We first present a general
pattern of usage that pertains to all the exemplars we described. We
then dive deeper into Exemplars I and II, which resulted in specific
analytic data models.

7.1 General Usage Scenarios
The analyst starts with the Tree Viewer Pane to examine the exist-
ing data model. They can browse the tree by expanding subtrees or
searching for specific elements by name. They can select potentially
interesting elements. This selection action will add the element to the
Model Canvas Pane and into a generic unassigned card. The analyst can
immediately view data associated with this element in the Data Viewer
Pane to familiarize themselves with what is present in their dataset and
make a judgement on whether the element is useful for their analysis
or not. As the analyst includes more nodes, they can proceed to define
new categories and move elements between concept cards. Through
this process, they are defining a new analytic data model anchored in a
conceptual understanding of the data that support their already formed
(or evolving) data question. To support the analyst’s discovery, the
Suggestion Pane will also provide additional tree nodes based upon the
content of the Model Canvas Pane. This feature is intended to support
the discovery of new elements that the analyst had not yet considered,
especially for those that are less familiar with the existing data model.
To expedite the process, the analyst can choose to add these suggestions
to their model.

7.2 Examining Text Content
Exemplar I (Sect. 4.1) sought to use text content to contextualize the
end-users’ visual analysis approaches. We now describe how they can
achieve this goal using Natto. The analyst first begins by searching
the tree for any obvious element names containing text that they could
add to the Canvas Pane. The analyst begins to realise that text exists in
multiple places throughout the XML Tree. For example, user-generated
text within and alongside visualizations that end-users created from
their data. Text within visualizations includes titles and axis labels,
while text alongside visualizations includes captions. Deciding that
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captions created by end-users are most interesting, the analyst limits
their analysis to these text types. Wishing to further organize these
findings, the analyst creates separate concept cards for text elements
that are in titles, captions, and names as is shown in Fig. 1. They use
suggestions to avoid having to expand and collapse various subtrees to
find and select relevant elements. Satisfied with their selections, they
export the data and bring it into another tool for further analysis. In
Exemplar I, the analyst brought their analytic data model into Python
to conduct a machine learning analysis.

7.3 Exploring Visual Strategies

The analyst has prior knowledge of the data model that anchors their
search in the worksheet subtree in the Consensus Tree Pane. They
search within the worksheet for data that indicates one worksheet is
linked to another, as this indicates an attempt to link information across
worksheets. Since worksheets contain visualizations constructed by
end-users, these linkages between worksheets can be used to infer
attempts by the end-user to construct linked views. To further support
their search, the analyst can use the Data Viewer Pane to examine the
data distribution elements describing the so-called ‘action types’. These
‘action’ types indicate how the end-user is choosing to link worksheets.
The analyst can make an assessment of the frequency and types of
actions and identify those that might be more interesting. From this
initially targeted examination, they can begin to expand their search,
looking at the different encodings in the worksheet tree to get a sense of
how they might link actions, encodings, and encoding types. Over time,
their initial data model grows in complexity. Eventually, they export
this data snapshot and begin to perform a more intensive descriptive
statistical analysis; for the analyst in Exemplar II (4.2) this statistical
analysis was carried out in Tableau.

8 DISCUSSION

Analysts routinely apply data transformations to iteratively explore
multiple alternative representations of their data [28, 32, 37]. Often,
such transformations are cast as data wrangling, but through discussions
with four domain experts, we found that there is more depth to this
process. Data often needs to be transformed from an existing data
model (in our case an XML document) to an analytic data model that
addresses a data question. One challenge of this transformation is
determining the mapping between these data models, a problem that
has been tackled extensively by the database community (see Section 2).
Another challenge is the analysts’ ability to ground themselves in an
existing data model and envision a new one. Our research explored
this latter challenge. We developed Natto as a demonstration of how
analysts could be better supported in their pursuit of creating analytic
data models, especially around hierarchical structures. While aspects
of our findings are specific to the group of experts we interviewed and
their datasets, other aspects can generalize to other applications. We
briefly discuss the implications and limitations of our work.

8.1 Expanding our View of Data Preparation

The process of understanding and transforming data has always been
seen as an integral part of data preparation [28]. However, it is our
interpretation that, in practice, ‘data understanding’ is often prematurely
limited to ‘data quality understanding’. We encourage researchers to
look beyond this limited scope and consider conceptual transformations
of the data that arise when mapping from an existing model to a new
analytic data model. In Natto, the Model Canvas Pane serves as the
intermediary to facilitate the transformations between the existing tree
data model and a tabular relational data model. We believe however,
that there are more opportunities to consider for conceptual modeling
in data preparation and within data wrangling specifically.

We also encourage researchers to look beyond tabular data prepara-
tion. Although tabular data remains the primary data source for many
organizations [41], XML and other types of hierarchical data, represent
a sizable and growing amount of data. Hierarchical data models present
unique challenges. For example, in our study, the derivation of the right
form of intermediary data to support exploration and transformation

of a hierarchical data model, was especially important. While visu-
alization research acknowledges the importance of derived data, it is
rarely discussed as a design choice that researchers make alongside
other visual and interaction design choices. We encourage researchers
to discuss these choices as part of design studies as these decisions can
generalize to other problems.

8.2 Incorporating Semantic Relationships
The most common data abstractions that research focuses on are inclu-
sion (subtype-supertype, ‘is a’), aggregation, and association (mem-
bership) relationships [56]. In addition to common data abstractions,
research in linguistics, logic, and cognitive psychology has recognized
the importance and prevalence of semantic relationships in data such
as synonyms, inclusion, possession, and attribution [66].

Our implementation of Natto leverages some aspects of semantic
relationships in the data through the consensus tree and by discovery
relationships through the data graph. To some extent, we also enable
users to define new semantic relationships in the data, ones that are
more pertinent to their analysis goals, through the Model Canvas Pane.
However, these semantic relationships play a more central role in help-
ing the analysts construct their analytic data models. In our design
study, the semantics of the XML data model reflected the visual anal-
ysis tool’s architecture and, through a series of expert exemplars, we
show how this existing data model is not amenable to analytic goals.
This tension between the existing data semantics and whether they align
with the analysts mental model, raises interesting research questions.
Most notably, what happens when the transformations carried out by
the user remove, alter, or invalidate, existing semantic relations in the
existing data model? Balancing the trade-off between existing data
semantics, which are typically established by an organization as well
as personal data semantics, which constitute the analysts own notions
about the data, offers interesting research directions to pursue.

8.3 Limitations
Our research was carried out in collaboration with a set of highly spe-
cialized experts and their data. This was both a strength and limitation
of our findings and contributions. While we could probe their chal-
lenges of creating an analytic data model in depth, the Natto prototype
is influenced by these experts’ experiences. The methods that we chose
to explore were also relatively simple, but we believe they were effec-
tive for the specific needs of our experts. However, choosing different
methods can further improve upon the user experience. For instance,
other methods can be used to explore content similarity among ele-
ments of the data graph or to generate recommendations. Finally, we
chose visual components that are familiar and tend to be ubiquitous to
the traversal and display of hierarchical data. However, richer visual
and interaction encoding can be explored. Our primary goal in this
analysis was to characterize the challenges of creating analytic data
models and explore, as well as speculate upon, the algorithmic, visual,
and interactions design choices that address this unmet need. While this
may limit Natto’s ability to seamlessly generalize to other datasets, we
nevertheless believe that aspects of Natto and our research findings will
transfer to other application contexts in data preparation and wrangling.

9 CONCLUSION

We carried out a formative design study with domain experts posing
different data questions on a common dataset. We identified their
strategies and pain points for transforming their existing data model
into a new analytic data model. We describe a set of goals, tasks, and
design requirements for conceiving and creating an analytic data model.
From this set, we have implemented the Natto prototype and a set of
visual and interaction design choices. We provide application scenarios
derived from our interviews with experts to demonstrate the utility of
Natto. Our work links together important ideas in conceptual mod-
eling, data transformation, and data wrangling. Finally, our research
contributes to a broader understanding of how analysts organize and
interrogate their data at the conceptual level. Our contributions bring
together ideas from across multiple disciplines to present a novel visual
and interactive experience for data analysts.
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