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Fig. 1. PSEUDo creates a representation model for multivariate time series based on locality-sensitive hashing, conducts scalable
pattern retrieval with few initial labels, and evolves with interpretable relevance feedback to capture subjective pattern similarity.

Abstract— We present PSEUDo, a visual pattern retrieval tool for multivariate time series. It aims to overcome the uneconomic
(re-)training problem accompanying deep learning-based methods. Very high-dimensional time series emerge on an unprecedented
scale due to increasing sensor usage and data storage. Visual pattern search is one of the most frequent tasks on time series.
Automatic pattern retrieval methods often suffer from inefficient training data, a lack of ground truth labels, and a discrepancy between
the similarity perceived by the algorithm and required by the user or the task. Our proposal is based on the query-aware locality-sensitive
hashing technique to create a representation of multivariate time series windows. It features sub-linear training and inference time
with respect to data dimensions. This performance gain allows an instantaneous relevance-feedback-driven adaption to converge
to users’ similarity notion. We demonstrate PSEUDo’s performance in terms of accuracy, speed, steerability, and usability through
quantitative benchmarks with representative time series retrieval methods and a case study. We find that PSEUDo detects patterns
in high-dimensional time series efficiently, improves the result with relevance feedback through feature selection, and allows an
understandable as well as user-friendly retrieval process.

Index Terms—time series, pattern search, locality-sensitive hashing, relevance feedback

1 INTRODUCTION

Searching for patterns similar to a given query in a time series database
is one of the most frequent problems in time series analysis [38]. In
the literature, it is called pattern search [28, 36], time series index-
ing [12], similarity search [22, 47], query by content, sub-sequence
matching [19], and twin search [21]. It is an abstraction of many
real-world problems, e.g., identifying brightness transients relating to
astronomical objects like supernovae or quasars [35], searching for
regulatory elements in genomic sequences [36], tracking recurrent
events in data collected from inertial measurement units in mobile de-
vices [34], and detecting similar behaviors in stock price [19, 39, 47].
It remains an interesting and important question to efficiently and ac-
curately search for patterns in unlabeled multivariate time series. Our
automotive engineers search for patterns spontaneously in measure-
ment from various sensors and control units and wish for an answer
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as promptly as possible. This task is challenging, not only because of
the high dimensions (a large number of tracks), meager labels, and the
efficiency requirement, but also the subjective and use-case-dependent
similarity notion. Whereas model-free similarity measures lack train-
able parameters and the power to model potentially complex similarity
rules catering to the user’s similarity notion, machine learning may
suffer from insufficient labels and inefficient training. Furthermore, our
application engineers ask for an interpretable process, i.e., which tracks
count most for the event behind the pattern, to assist the subsequent
domain-specific analysis.

We propose PSEUDo (Pattern Search, Exploration and Understand-
ing in multivariate time series Data), a tool for visual pattern retrieval
in Multivariate Time Series (MTS), especially very high-dimensional
time series. It is powered by Locality-Sensitive Hashing (LSH) [60].
In a nutshell, LSH linearly maps all tracks into one with groups of
hash functions, making subsequent processing scalable with respect
to the data dimensions. Our major contribution is making LSH train-
able and extending it with an efficient, steerable, and interpretable
relevance feedback mechanism. Researchers have also introduced rel-
evance feedback for tabular [6], text [57], and image data [15]. It is
first introduced to time series data in [31] and appears recently in [36].
Finally, we implemented a prototypical user interface to assist the algo-
rithm. Such UIs for time series retrieval are often called Visual Query
Systems (VQSs) [35, 36, 55].

As shown in Fig. 1, the overall pipeline works as follows: 1) prepro-
cessing the time series with sliding windows and window normalization
( 1⃝ in Fig. 1); 2) marking by the user a pattern in the time series as the



query searched for in the time series database ( 2⃝); 3) initial search
based on the standard LSH (from 1⃝ 2⃝ to 4⃝); 4) sampling results for
relevance feedback (from 4⃝ to 5⃝); 5) inspecting results and providing
relevance feedback by the user ( 5⃝); 6) updating the LSH model and
rerunning search (from 5⃝ back to 3⃝); 7) iterating the steps 4) to 6)
until the user is satisfied with the result.

We benchmarked its “open-loop” accuracy and speed without rele-
vance feedback against four representative benchmarking methods on
four labeled datasets with different characteristics. Disappointingly, we
found that the methods work differently on different datasets, and there
is no universally best method in terms of accuracy. In the speed bench-
mark, PSEUDo is slightly worse than Mueen’s Algorithm for Similarity
Search (MASS) (the state-of-the-art tool for time series pattern search
in terms of speed) on univariate and low-dimensional datasets. Still,
it starts to overtake the latter on a relatively high-dimensional dataset.
To verify this finding, we benchmarked the scalability with respect to
the number of tracks with an unlabeled very high-dimensional dataset.
Next, we evaluate the effectiveness of the relevance feedback mecha-
nism, where we use an agent simulating sensible user feedback as the
experimental group and two agents simulating extreme user feedback
as control groups. We witnessed an increasing accuracy within five
feedback rounds, which happened instantaneously. Furthermore, we
noticed that PSEUDo attaches higher weights to informative tracks and
lower to less helpful ones, confirming its feature selection mechanism.
Finally, we invited an expert to test PSEUDo in his use case.

2 REQUIREMENT ANALYSIS

After discussion with our engineers, we collected the following major
requirements and analyzed them.

R1: Quick response. The engineers wish for an answer as promptly
as possible. This requirement is also necessary if the query system is
interactive or uses active learning. Consequently, optimization-based
model training is not preferred. On the one hand, MASS suggests
that Euclidean Distance (ED) is the fastest time series similarity mea-
sure [43, 59]. On the other hand, LSH excels in dealing with high-
dimensional time series [60]. Therefore, we use LSH as feature repre-
sentation and ED as the similarity/distance measure.

R2: Adaptive similarity measure. The interpretation of “similarity”
is subject to the use case. For instance, one engineer wants to find a
signal related to the start of the engine in CAN Bus data. Depending
on the task, sometimes, he needs to search for all such signals and
sometimes only a specific subcategory that is particularly similar to the
query. However, he can begin with the same query. We deal with the
problem by introducing a relevance feedback mechanism to the LSH
model. According to R1, this mechanism should also be efficient.

R3: Interpretable process. A typical task of our calibration engi-
neers is spontaneously tracing a signal related to an anomaly. Locating
the recurrence of the target signal is the first step. After that, they need
to analyze the root of the problem. It often means finding the tracks
that have a causal relationship with the target signal. Accordingly, we
introduced a feature selection-based feedback mechanism.

R4: Accurate retrieval. This self-explanatory requirement often
conflicts with R1 and sometimes R3. It is unfeasible to achieve the
best performance from every aspect, and we choose to be defensive at
this point. Accuracy depends mainly on the representation (LSH) and
the similarity measure (ED). While [60] has examined LSH’s accuracy
sacrifice, we verified it with our own experiments. As for the similarity
measure, Bagnall et al. benchmarked 20 methods and found Dynamic
Time Warping (DTW) hard to beat for time series classification [4].
Nonetheless, the result of the quicker ED tends to converge to that of
DTW, providing more data [5]. These findings consolidate our choice
of ED as the primary similarity measure.

Please note that we postpone related work to Sect. 6 to avoid inter-
rupting the information flow.

3 RELEVANCE-FEEDBACK-DRIVEN LOCALITY-SENSITIVE
HASHING

This section describes PSEUDo’s relevance-feedback-driven learning
algorithm based on LSH. LSH allows querying large MTS efficiently

for real-time user interaction. We extended it with an also efficient and
interpretable relevance feedback algorithm.

We derive our conceptual model, depicted in Fig. 2, from FDive,
the feedback-driven preference learning method by Behrisch et al.
[6]. Inspired by the conceptual model, we assume that the randomly
initialized parameters in the LSH hash functions are trainable to combat
the ambiguity of time series similarity.
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Fig. 2. Conceptual Model: PSEUDo is (1) an instantiation of FDive [6]
for MTS retrieval. (2) It models data with LSH, (3) samples the outcomes,
(4) invites the user to review the model’s similarity understanding, and
(5) optimizes the LSH functions based on user feedback.

In the conceptual model, input MTS data are modeled with LSH
functions and stored in query-aware hash tables, significantly speeding
up the processing. Striving for a sensible data modeling on top of
LSH’s probabilistic nature and converging to the subjective similarity,
we draw a sample set from the hashed time series. The user then checks
the samples as well as their ”average” shape and variance per bucket.
This mechanism actively contributes to the querying process in that
PSEUDo learns to understand the user’s similarity notion and interprets
it as feature/track importance. Due to the size and complexity of MTS
data, such an open and adaptable exploration process was unfeasible
before within our self-imposed performance limits. Moreover, we can
see that such a user-in-the-loop active learning approach improves the
overall retrieval performance and remains explainable.

For a detailed description, we introduce the following notations. We
use lower case letters for scalars and upper case for matrices; i for
time steps, j for track indices, and r for feedback rounds; vectors are
denoted with arrows, like a⃗; complex element-wise operations vectors
or matrices are denoted with their entries like {a j}; we use C to denote
sampled candidates, with C+/− being positively or negatively labeled
items. Next, we will explain how to transform the conceptual model
into the concrete PSEUDo pipeline in Fig. 3.

3.1 Initial Modeling
The initial modeling follows the procedures proposed in [60]. As Fig. 3
shows, the input data include a query Q = {⃗qi ∈ Rd}, i = 1,2, ..., t
and a d-dimensional MTS S = {⃗si ∈ Rd}, i = 1,2, ...,n, of length n.
The output data are the time series windows filtered by LSH and their
similarity to Q. Because the method is extensive and established, we
describe only the essentials in this section.

As the red box in Fig. 3 indicates, the method preprocesses S by
partitioning it with a sliding window of size t (length of Q). Optionally,
we can use a range of differently sized sliding windows for patterns
with variable duration. Subsequently, the windows and the query are
normalized and prepared for hashing.

In the next step, LSH initializes l compound hash functions. Each
compound hash function consists of k hash functions h(⃗x), x⃗∈Rd . Each
hash function h is independently initialized with a vector a⃗= {a j} ∈Rd

containing d elements drawn independently from the standard normal
distribution (a j ∼ N (0,1)).

Fig. 4 illustrates the details during the modeling process. Each h
calculates dot product between its a⃗ and every time step x⃗i in a time
series window X = {⃗xi}, thus merging d tracks in X to a univariate hash
code of length t. A projection collision for x⃗i happens when |h(⃗qi)−
h(⃗xi)| ≤ ω

2 holds with a given error band ω . Further, a hash collision for
X happens when the number of projection collisions between the query
Q and X under an h exceeds a threshold ts. A group hash collision for X
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Fig. 3. PSEUDo Processing Pipeline: (1) PSEUDo receives a query and preprocessed time series windows as inputs, (2) hash them into hash
table buckets representing the distribution of similarity to the query (green depicts similar, red dissimilar), (3) draw representatives from both similar
and dissimilar buckets, (4) receive user feedback, (5) and update the hash functions and the query pattern accordingly.

happens when X and Q have hash collisions under all k hash functions
in a compound hash function. Finally, X is considered a candidate
similar to Q when X and Q have compound hash collision under at least
one of the l compound hash functions. How l, k, and other parameters
can be optimally set is referred to [60].

In the next step, the pipeline uses a similarity measure like ED or
DTW to calculate the similarity of all candidates to the query. PSEUDo
modifies the MTS modeling scheme [60] by applying the similarity
measure on the hash code of the candidates rather than the time series
windows in this stage. This modification has two advantages: (1) the
complexity with respect to the number of tracks is reduced from linear
to constant; (2) the similarity measure is based on a representation from
LSH, which is updated later, reflecting the user’s emphasis rather than
pure algorithmic. Although the model building appears complex, it can
be computed instantaneously and allows rapid adaption.
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Fig. 4. Modeling Process (detail): (1) PSEUDo hashes all multivariate
time series windows including the query to univariate hash codes, (2)
prunes the windows outside the hash bucket containing the query, (3)
rank the similarity of the remaining windows to the query based on a
similarity measure like ED or DTW.

Retrieval Invariances: Our modeling scheme allows us to account
for various retrieval invariances. While the sliding window-based
preprocessing covers horizontal translational invariance (translation
along the time axis) (Fig. 4.1), it fails to capture efficiently. Vertical
translational invariance and scaling invariance (amplitude scaling and
bias in the y-axis) are handled by normalizing all windows in the first
step (Fig. 4.1). If necessary, the distortion invariance, i.e., time shifts in
the pattern, is approached with an elastic measure like DTW.

3.2 Relevance Feedback
We achieve the model steering in our conceptual model (Fig. 2) through
the representative selection and relevance feedback steps. They allow
users to incorporate their domain expertise and guide how the model
should alter its current state. This process has two components: (1) it is
inherently a visual-interactive (interface) problem and will therefore be
elaborated on in Sect. 4, and (2) we need to decide which representative

samples to show the user. In PSEUDo, users can give feedback on
samples and hash tables.

Relevance Feedback on Candidate Samples: We draw samples
from the candidates (windows surviving filtering by LSH as explained
in Sect. 3.1) and invite the user to label them. The number of candidates
can be large, even after filtering with LSH. Users can not process more
than possibly a few dozen without being stuck in a tedious labeling
process. Following the central idea of (visual) active learning [3,15,17],
we choose representatives based on the trade-off between exploitation
and exploration. On the exploitation side, PSEUDo includes the top-5
candidates with the highest similarity in the samples. However, if we
restrict ourselves to top hits, the learning process tends to reinforce the
current knowledge while refusing to learn something new. Hence, we
also draw five random samples from the candidates that may not have
top similarity scores.

Relevance Feedback on Hash Tables: Besides predicted candidate
samples, we visualize the hash tables and allow the user to provide
feedback on them. The details are kept in Sect. 4.2. As mentioned,
the whole LSH model uses a histogram for similarity ranking. We
represent the individual hash table likewise. The histogram visualizes
the similarity distribution perceived by a hash table. We interpret the
commonly occurring histogram patterns in the following manner: a
positively skewed shape points to a hash function, which observes
many windows similar to the query, while a negatively skewed shape

means the opposite. Unitary or bi-modal distributions
refer to undecided or decisive hash functions.

3.3 Updating Model

Conventional LSH does not contain trainable parameters and cannot
be optimized directly by relevance feedback. However, the randomly
initialized parameters in the hash functions do not have to persist. As
described in Sect. 3.1, a hash function h performs dot product a⃗ · x⃗i
with its hashing vector a⃗ and i-th time step in a window X = {⃗xi ∈Rd}.
This operation can be interpreted as a weighted merge of d tracks in X
with the track weights in a⃗.

To capture relevance feedback, we propose to modify a⃗ with a
learned weighting vector w⃗ and use the vector b⃗ = w⃗ ⊙ a⃗ in place
of a⃗, where ⊙ denotes element-wise product.

To avoid vanishing or exploding parameters, we want to retain the
expectation of the magnitude of a⃗, namely E(||⃗b||) = E(||⃗a||). It is
achieved by normalizing the magnitude of w⃗ to

√
d. We normalize w⃗

instead of b⃗ directly because there are multiple b⃗ but only one w⃗.

Recall that a j ∼ N (0,1), where a j is the j-th element of a⃗ corre-
sponding to the j-th track. The squared magnitude of a⃗ is
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Likewise, since b j = w j ·a j ∼ N (0,w2
j), it follows

E(||⃗b||2) =
d

∑
j=1

Var(b j) =
d

∑
j=1

w2
j = E(||w⃗||2)

Aiming at E(||⃗b||2) = E(||⃗a||2), we set

E(||w⃗||2) = E(||⃗b||2) = E(||⃗a||2) = d

As a result, we need to normalize ||w⃗|| to
√

d.
PSEUDo allows two types of relevance feedback, namely, feedback

on the candidate samples and the hash tables. Accordingly, we maintain
two weight vectors w⃗s and w⃗h for samples and hash tables respectively.

Sample Relevance Adaption: The feedback on the positively la-
beled samples, C+ = {Cpos}, is transformed to track importance. We
calculate the DTW distances or ED between the tracks of the positively
labeled samples and that of the query Q. Let q⃗ j be the j-th track of Q,
c⃗ j the j-th track of Cpos. We define z⃗ j = ∑Cpos∈C+ DTW (⃗q j, c⃗ j) as the
aggregate distance between c⃗ j and q⃗ j . Next, we normalize the entries in
z⃗ j between [0,1] with z⃗∗ = {z∗j}= {z j/∑

d
j=1 z j}, then convert distance

to its negatively correlated weight vector yields w⃗∗
s = {1− z∗j}, which

is subsequently normalized to w⃗s = w⃗∗
s

√
d

||w⃗∗
s ||

.
Hash Table Relevance Adaption: The feedback on the hash tables

can be implemented likewise. Let A = {⃗apos} be the parameter vectors
of all hash functions labeled as positive by the user. Then, we can define
a⃗h = {ah, j}= {∑a⃗pos∈A a2

pos, j}. After normalization to magnitude
√

d

we get w⃗h = a⃗h

√
d

||⃗ah||
Finally, we merge w⃗s,r, w⃗h,r in r-th feedback round and w⃗r−1 into

w⃗r through a linear combination with a learning rate α , which can be
gradually modified to enforce exploration stability [6].

w⃗∗
r = (1−α)w⃗r−1 +

α

2
(w⃗s,r + w⃗h,r)

w⃗r = w⃗∗
r

√
d

||w⃗∗
i ||

Query Adaption: As shown by the backward arrow in Fig. 3, we
update not only the LSH hash functions but also the query because
the initial query does not necessarily represent the generally desired
shape of the pattern. In each training iteration, we integrate Q (search
query) and C+ (set of positively labeled samples). This operation is
known to be non-trivial [18] and impacts future exploration direction.
After the trial with the naı̈ve element-wise average yields unsatisfac-
tory results, because the average often resembles none of the original
windows, we decided for Dynamic Time Warping Barycenter Averag-
ing (DBA) [50], as it takes distortion and time shift during averaging
into consideration [18, 20, 50].

4 USER INTERFACE

We designed PSEUDo’s visual interface depicted in Fig. 5.
It comprises five interlinked views facilitating data exploration,
query definition, process monitoring, result inspection, relevance
feedback, and state management. A REST API connects
the web-based user interface to PSEUDo’s backend algorithm.
The backend (in Python and C++) and frontend (with Angu-
lar) code are available under https://git.science.uu.nl/vig/
sublinear-algorithms-for-va/pseudo. The video https://
www.youtube.com/watch?v=oJfXoDyZRPY demonstrates the user
interface as well as a concise workflow.

4.1 Dataset Overview, Track View, and Query View.
The Dataset Overview, Tracks View, and Query View collaborate closely.
The Dataset Overview (Fig. 5.b) plots tracks selected in the Tracks View
(Fig. 5.a) together with the window labels (dots Fig. 5.b3 in the range
slider Fig. 5.b1 and marked intervals in the line chart Fig. 5.b2). Besides
direct panning and zooming, a range slider (Fig. 5.b1) above the track
curves (Fig. 5.b2) serves as a mini-map for navigation and an overview
of predictions and labels.

The Query View (Fig. 5.c) shows the user-defined multivariate query.
The user defines the query in a query-by-example manner by selecting
a region in the Dataset Overview. The user can change the query on
the fly, but PSEUDo must repeat the hashing process whenever the
query size varies. Typically users have to wait several seconds for LSH
parameter estimation. While not focused on in this project, our query
definition interface currently lacks the option to define patterns shifted
across tracks. We plan to investigate better query interfaces for MTS
data following recent examples, such as [11].

4.2 Feedback View
The Feedback View (Fig. 5.c) shows representatives of all predictions,
visualizes hash tables, and keeps track of labeled data. We differentiate
three respective tabs for different purposes:

The Samples Tab (Fig. 5.d1) lists samples of the classified windows.
They are surrounded by frames color-encoded from green over yellow
to red, indicating decreasing similarity to the query. Right above the
samples, PSEUDo invites the user to label the windows by clicking
for similar, for indecisive, and for dissimilar, as described in
Sect. 3.3 (Sample Relevance Adaption).

PSEUDo visualizes the hash tables in the Tables Tab (Fig. 5.d2).
Each hash table is visualized as a histogram, showing the similarity
distribution perceived by the hash function. Like the frames surround-
ing the samples in the Samples Tab, the bars in the histograms here are
also color-encoded from green to red, indicating decreasing similarity
to the current query. To help understand how well the hash functions
work, we plot each time step’s mean, minimum, and maximum values
among the top-20 similar windows for each hash function. The mean
value curves portray the pattern shape perceived as similar by the hash
function, while the minimum and maximum values form the lower and
upper bound of the pattern. The band’s tightness implies the certainty
or importance of the track during classification. Based on this visual
encoding, the user can modify the hash tables’ importance by clicking

for important and for indecisive, as described in Sect. 3.3 (Hash
Table Relevance Adaption). In the future, we plan to implement a
ranking or sampling mechanism to avoid showing all hash tables.

The labeled windows for the current round are kept in the Labeled
Data Tab (Fig. 5.d3). Users can revise decisions before clicking the
Train button. PSEUDo will consider the labeled sample windows

and hash tables in the next training round.

4.3 Results View
The Results View (Fig. 5.e) shows the outcome statistics and provides
git-like version management.

In the Classifier Tab (Fig. 5.e1), we use a result histogram to visu-
alize the distribution of similarity between the query and all windows
that survive LSH’s pruning. Clicking a bin in the histogram shows
the reconstructed visual pattern analogous to the ones in the Feedback
View. Rather than using the top-20, this pattern result view summa-
rizes all windows in the chosen bin. The mean curves also show the
average form within this bin, bounded by each time step’s minimum
and maximum values to illustrate the variance within tracks. The his-
togram and the reconstructed shape help the user better understand the
classification result and provide guidance on the strictness during the
labeling process. Besides, users can set the number of top candidates
and display them in the dataset overview.

5 EVALUATION

We evaluate PSEUDo against the requirements described in Sect. 2
through three distinct evaluation threads. First, we benchmark accu-
racy (R4) and speed/scalability (R1) with representative techniques for

https://git.science.uu.nl/vig/sublinear-algorithms-for-va/pseudo
https://git.science.uu.nl/vig/sublinear-algorithms-for-va/pseudo
https://www.youtube.com/watch?v=oJfXoDyZRPY
https://www.youtube.com/watch?v=oJfXoDyZRPY
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time series pattern retrieval. Second, we verify the steerability of the
relevance feedback mechanism (R2). Third, we validate the usability,
including understandability (R3), through an interview with an expert
from the energy transition domain.

We use six datasets with different characteristics, namely 1) Deep
Valve: electrical current through a solenoid valve, 2) EEG Eye State,
3) Filling Prediction: relative air filling in an Otto engine, 4) Variable
Displacement: rotational speed and acceleration of an Otto engine 5)
EEG Schizophrenia and 6) Intelliekon: household energy consumption.
1) to 4) have ground truth labels. Therefore, they are used in the
accuracy benchmark. While the speed benchmark also uses these four
datasets, we would like to evaluate PSEUDo’s scalability with respect
to higher data dimensions more thoroughly. Hence, we include the
unlabeled EEG Schizophrenia dataset with 70 effective tracks because
the speed/scalability test does not require labels. 6) is the dataset used
by the interviewed expert. We keep a detailed description of the datasets
and the physical background of the queries in Appendix A.

All experiments are conducted on a standard laptop running on 64-
bit Windows 10 Enterprise with Intel i7-8650U CPU, 16GB RAM,
and 1TB HDD. We keep the complete experiment setup, including
hardware, software, and parameters in Appendix B.

5.1 Accuracy and Speed

We benchmark PSEUDo’s accuracy with deactivated relevance feed-
back to the representative methods correlation, DTW [7,44], MASS [43,
45], and Symbolic Aggregate approXimation (SAX) [37, 38].

Note that SAX is a representation of time series. However, it comes
with a distance measure [38], making it a full-fledged similarity mea-
sure. SAX uses Piecewise Aggregate Approximation (PAA) as a neces-
sary preprocessing step, which reduces data volume. To ensure a fair
comparison, we apply PAA with the same resolution for other methods.

Besides step-wise classification metrics accuracy, balanced accuracy,
precision, recall, and F1 score, we borrow the metric mean Average
Precision (mAP) from object detection in computer vision in favor of a
segment-wise perspective. This metric requires a threshold for Inter-
section over Union (IoU) between a prediction (predicted pattern) and
the closest ground truth label to judge the prediction as a true positive.
In this context, the IoU between a prediction and a ground truth label
means their overlapping time span divided by their joint time span. If
there is no overlapping, IoU is null. We have used 30% and 50% as
the IoU-threshold. They are denoted mAP30 and mAP50, respectively.

For other metrics, we tune the confidence/distance threshold to achieve
the best F1 score.

According to the benchmark in Table 1, each method performs well
on some datasets while poorly on others. This result implies that the
notion of similarity may vary in different use cases, which leads to the
need for adaptive similarity measures.

Next, we measure the elapsed time of all methods on the same
four labeled datasets. We repeat the same experiment five times and
report the average results in Table 2. PSEUDo, in our slow DTW
configuration, is comparable with MASS, the fastest similarity search
algorithm so far, and even surpasses the latter in high-dimensional
cases like the EEG eye state dataset. In low-dimensional datasets, the
pruning effect of LSH plays a major role in the acceleration by reducing
the number of candidates. Whereas in high-dimensional cases, LSH’s
weighted track merging provides sub-linear scalability.

To further verify this scalability, we measure the elapsed time with an
increasing number of tracks in the high-dimensional EEG Schizophre-
nia dataset. The result in Fig. 6 confirms PSEUDo’s good scalability
for high-dimensional data. Please refer to Appendix C for details of the
scalability analysis and experiment.
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Fig. 6. Scalability Benchmark: PSEUDo’s speed stands out as the data
dimensions increase. While the other methods scale linearly with the
data dimensions, PSEUDo achieves sub-linear scalability.

5.2 Steerability
While Sect. 5.1 measures the “open-loop” performance without rele-
vance feedback, this section verifies the effectiveness and mechanics of
relevance feedback through accuracy and track importance evolution.

In general, it is challenging to evaluate active learning systems
objectively. Inspired by [57], we evaluate PSEUDo’s steerability with
three agents simulating user behavior. The first agent simulates normal
user feedback and labels the samples according to the ground truth
labels. If a sample has at least 50% IoU with a ground truth label, the



Datasets Methods Accuracy Balanced accuracy Precision Recall F1 score mAP30 mAP50

Deep valve Correlation 0.9 0.77 0.8 0.57 0.66 0.78 0.22
- pattern contains pulses DTW 0.92 0.81 0.92 0.63 0.75 0.59 0.26
- large horizontal scaling ED (MASS) 0.18 0.5 0.18 1 0.31 0.06 0.01

LSH (PSEUDo) 0.92 0.87 0.78 0.79 0.78 0.9 0.74
SAX 0.96 0.94 0.89 0.91 0.9 0.78 0.36

EEG Eye State Correlation 0.64 0.66 0.57 0.8 0.67 0.29 0.1
- pattern very fuzzy DTW 0.78 0.79 0.72 0.84 0.77 0.61 0.5
- extreme horizonal scaling ED (MASS) 0.72 0.72 0.66 0.78 0.71 0.29 0.16

LSH (PSEUDo) 0.7 0.7 0.66 0.67 0.67 0.25 0.17
SAX 0.45 0.5 0.45 1 0.62 0.1 0.09

Filling prediction Correlation 0.97 0.79 0.95 0.59 0.73 0.79 0.79
- pattern mainly stationary DTW 0.94 0.9 0.54 0.85 0.66 0.77 0.77
- pattern variation ED (MASS) 0.97 0.8 0.9 0.6 0.72 0.78 0.78

concentrate on both ends LSH (PSEUDo) 0.95 0.67 0.9 0.35 0.51 0.55 0.55
SAX 0.98 0.87 0.93 0.74 0.82 0.94 0.94

Variable Displacement Correlation 1.00 ± 0.00 0.96 ± 0.02 0.98 ± 0.01 0.91 ± 0.03 0.95 ± 0.01 0.83 ± 0.34 0.83 ± 0.34
- vibrating pattern DTW 1.00 ± 0.00 0.92 ± 0.07 0.88 ± 0.10 0.84 ± 0.15 0.85 ± 0.10 0.74 ± 0.31 0.67 ± 0.34

ED (MASS) 0.94 ± 0.04 0.72 ± 0.10 0.14 ± 0.09 0.49 ± 0.23 0.19 ± 0.09 0.07 ± 0.07 0.02 ± 0.02
LSH (PSEUDo) 0.99 ± 0.01 0.74 ± 0.12 0.69 ± 0.34 0.48 ± 0.24 0.54 ± 0.24 0.31 ± 0.21 0.30 ± 0.21
SAX 1.00 ± 0.00 0.90 ± 0.07 0.95 ± 0.04 0.80 ± 0.14 0.86 ± 0.10 0.66 ± 0.33 0.66 ± 0.33

Table 1. Accuracy Benchmark: Different methods work well on different datasets, indicating varying similarity notions in different use cases.
PSEUDo’s relevance feedback mechanism is deactivated in this experiment.

Datasets Deep valve EEG Eye Filling pred. Variable Disp.

Correlation 5.53 ± 0.45 9.89 ± 0.40 3.32 ± 0.06 51.16 ± 1.02
DTW 3.74 ± 0.06 20.67 ± 0.32 3.81 ± 0.10 34.72 ± 0.86
ED (MASS) 0.68 ± 0.03 0.56 ± 0.04 0.36 ± 0.03 4.45 ± 0.06
LSH (PSEUDo) 0.93 ± 0.04 0.30 ± 0.02 0.70 ± 0.05 9.21 ± 0.16
SAX 1.62 ± 0.10 4.16 ± 0.07 1.67 ± 0.04 11.95 ± 0.44

Table 2. Speed Benchmark: Search time is in seconds and averaged
over five repeats. PSEUDo is comparable in speed with the so far
fastest similarity search tool MASS and surpasses the latter in the high-
dimensional case (the EEG eye state dataset).

sample is accepted, otherwise rejected. The second agent accepts all
samples, and the third rejects all. They form the control groups. We
use the EEG Eye State dataset to demonstrate PSEUDo’s steerability
because this dataset is high-dimensional and has ground truth labels. A
plot with all tracks can be found in Appendix D. The target patterns
correspond to the periods when the subject’s eyes are closed. This
dataset contains 14 tracks. They are not equally informative for the
pattern search. Fig. 8 plots four representative tracks with target patterns
in gray. We can notice that the patterns in the upper two tracks, “F8”
and “AF4”, are much more prominent, while the lower two, “T7” and
“P7”, are not as helpful.

We run PSEUDo on the dataset with five feedback rounds and record
the accuracy as well as the track weights evolution. Fig. 7 shows the
accuracy metrics mAP30 and mAP50 in five feedback rounds with the
three agents. We witness an accuracy increase with the normal agent
and no improvement in the control groups. It confirms that sensible
feedback helps improve PSEUDo’s accuracy.

To further verify PSEUDo’s feature selection-based relevance feed-
back mechanism, we plot the evolution of the track weights (w⃗ in
Sect. 3.3) in Fig. 3 (complete plot in Fig. 3), next to the plot of data. As
expected, the more instructive tracks are attached more weights, and
the less informative tracks get down-weighted. In contrast, the track
weights from the “all accepted” agent group evolve randomly because
the feedback contains no useful information. The track weights from
the “all rejected” agent group stay the same because PSEUDo currently
cannot exploit the rejected samples, which is one of its limitations.

5.3 Case Study
We conducted an in-person case study to show PSEUDo’s usability in a
real-world use case in the energy domain. The invited expert leads the
business unit of demand response and smart grids. He has over 19 years
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Fig. 7. Accuracy Evolution: During relevance feedback, accepting or
rejecting all samples yields no accuracy improvement, while normal user
feedback contributes to the accuracy.

of experience with smart meter data. In an individual one-hour session,
we first introduced PSEUDo’s functionality, discussed the primary use
cases for smart meter data, and provided a brief demonstration. The
expert expressed great interest in PSEUDo: ”It is a quite interesting
tool to analyze time series.” and mentioned: ”I can imagine we can use
it to try to recognize specific characteristics.” We brainstormed multiple
use cases for smart meter data analysis. Then, we selected one of the
brainstormed application scenarios to show how PSEUDo can help him
identify shifts in energy consumption behaviors in households. Energy
consumption behavior is the response to complex environments that
should be analyzed on several temporal scales. However, our expert
currently lacks a tool to identify the changes in energy consumption
behaviors in high resolution. Instead, his team calculates the means
of smart meter data in specific periods, which is inflexible and cannot
capture minor changes in the periods.

For his use case (depicted in Fig. 5), we conducted experiments
on a smart meter dataset collected from a field study between 2009
and 2010 within the German research project Intelliekon [52]. For
two of 1720 randomly picked households, the expert decomposed
the one-year hourly energy consumption into the trend, seasonal, and
residual components based on a Bayesian structural TS model. These
three tracks are loaded as our MTS input (Fig. 5 (a)). During the
visual exploration with PSEUDo, the shifts in user behaviors can be
identified by searching for characteristic patterns in various temporal
scales (monthly, weekly, and daily).

During the study, the expert operated PSEUDo. It helped the expert
identify shifts in user behavior and inspect the behavior differences
between user groups. Overall, the expert spoke highly of PSEUDo.
The expert highlighted the interaction during querying and exploration:

”It is very useful to have a view of similarities among searched results
to help pick up the thresholds of similarity.”; i.e., Fig. 5(e). In the above
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use case, the expert did not address any significant usability issues. Only
when we imagined the broader use cases with multiple households, the
expert suggested that it would be more convenient to support visualizing
multiple files as track groups. From his perspective, a nice add-on for
PSEUDo would be a textual explanation of the hashing algorithm and
its visualizations because it can help him avoid explaining the results
to customers without a deep technical background. We keep details of
the interview in Appendix E.

6 RELATED WORK

To avoid interrupting the information flow, we move the related work
here, providing a broader context.

Time Series Analysis: Time series is a sequence of observations
recorded chronologically [9, 56]. If each observation forms a high-
dimensional vector, the time series is multivariate [60]. Each dimension
in the time series is called a channel, track, trace, attribute, or feature.
[30, 56] list around ten typical tasks that analysts perform on such data,
like anomaly detection, classification, and segmentation. Time series
indexing best describes our work, which addresses the problem of
finding time series in a database that are most similar to a given query.
With sliding windows, we convert the problem to time series indexing,
which is common among similar works [34, 36, 42]. It may result in
inefficiency though, when the pattern length varies. Recently, [42]
combats this issue by matching trends of sub-sequences in the pattern
as the first step, and [55] approaches the problem with quantifiers in
regex. Currently, we use a series of sliding windows of logarithmically
increasing size to capture patterns with varying duration.

Time Series Representation: A time series representation trans-
forms time series into another form. It compresses data volume, reduces
dimensionality, or extracts latent features. Figure 1 in [38] presents
a hierarchy of 17 time series representations. Most common ones in-
clude Discrete Fourier Transform (DFT), Fast Fourier transform (FFT),
Symbolic Aggregate approXimation (SAX), and Singular Value De-
composition (SVD). They continue to develop in recent years. For
instance, SAX assumes a normal distribution of the values in the time
series, which is not always satisfied. [25] and [8] solve this problem
with inverse normal transformation and a data-driven kernel density
estimator respectively. By focusing on a portion of Fourier coefficients,
Partial Fourier Transform (PFT) speeds up FFT further by an order of
magnitude [48]. Recently, deep learning models have been introduced

to represent time series, like pretrained Convolutional Neural Net-
works (CNNs) [2], convolutional autoencoder [36], and TS2Vec [61].
Our baseline method LSH can also be regarded as a time series repre-
sentation, which we will elaborate in the following paragraphs.

Locality-sensitive Hashing: Generally, hashing-based algorithms
aim for a significant speed boost with tolerable information loss. First
introduced in [27], LSH inherits this concept while differing from the
other hashing algorithms in that it maps similar objects to close hash
codes. This feature enables its application in a wide range of data min-
ing problems, like nearest neighbor search [26, 27], hierarchical clus-
tering [13, 32], and near-duplicate detection [14]. Conceptually, LSH
conceives data objects in the database as points in a high-dimensional
space. This space is cut into sub-regions by a group of random hyper-
planes. Each hyperplane is described by a hash function [27]. Each
sub-region corresponds to a bucket in the hash table, and the object
points in the same sub-region fall into the same bucket in the hash table.
To reduce false negatives, multiple hyperplane groups or multiple hash
function groups are used. All objects colliding with the query under at
least one hash function group are treated as candidates. Subsequently,
the candidates can be filtered with a similarity measure to suppress
false positives. Since LSH is considerably fast, it can be repeated for
every new query with query-centered bucketing, namely Query-Aware
Locality Sensitive Hashing (QALSH), yielding better accuracy [26].
Recently, LSH received attention for time series indexing, where it
achieves up to 20 times faster processing speeds with a minor accuracy
sacrifice [41]. Then, [60] introduced a query-aware adaptation for MTS.
We extend the idea by making LSH trainable.

Time Series Similarity Measure: Measuring similarity/distance
between two time series is a fundamental problem in time series anal-
ysis. Besides the Lp-norms, including ED (L2-norm), tolerance band
(L∞-norm), and Manhattan distance (L1-norm), Dynamic Time Warp-
ing (DTW) [7] is one of the most popular elastic similarity measures
that tackle time shifts. It shows superior accuracy even compared with
machine learning methods, as the extensive benchmark in [4] indicates.
Numerous other distance measures also exist. [40] benchmarked eleven
model-free similarity measures for time series classification. Recent
representative model-based similarity measures include siamese net-
works [33, 49] and NeuralWrap [29]. Some representations bring their
own similarity measures, like SAX’s distance measure between sym-
bols [38] and ShapeSearch’s scoring system defined upon their shape
primitives [55]. Starting from [31], researchers introduce relevance
feedback mechanisms to similarity measures to capture users’ similarity
notions [16, 36]. PSEUDo supports various similarity measures. In
experiments, we adopt DTW on the adaptive LSH representation to
address the issue of subjective similarity.

Visual Query Systems: The term Visual Query System (VQS)
is introduced by [51] and refers to tools that allow visual pattern re-
trieval via a user interface [35]. One essential component is query
definition. Two prevailing methods are query-by-example and query-
by-sketch. The former defines a query by providing an example, e.g.,
marking an interval in the time series plot, like in TimeSearcher [23]
and PEAX [36]. This method is preferable if the query is complex
and an example is accessible [36]. Query-by-sketch specifies a query
by drawing it. Examples range from QuerySketch [58] over Query-
Lines [51] to Zenvisage++ [35]. It gives users more freedom, especially
when the initial example is hard to find [46]. It is an active research
area as capturing the unbiased concept from the user’s drawing is chal-
lenging [35]. In addition, there are other query definition methods, e.g.,
ShapeSearch [55] supports natural language and regex besides sketch.
We list recent representative tools for time series pattern search together
with PSEUDo in Table 3. Rigorously speaking, MASS is a similarity
search algorithm and not a VQS. However, it is the fastest similarity
search algorithm and thus worth mentioning. Compared with PSEUDo,
few VQSs deal with multivariate time series and only PEAX addresses
the problem with the subjective similarity notion. PEAX’s use case in
epigenomics is relatively stable, making it acceptable to train a con-
volutional autoencoder with top gear for several days. In comparison,
PSEUDo focuses more on speed and interoperability, catering to the
spontaneous needs, especially for high-dimensional time series.



Tool Query Definition Feature
Representation

Similarity Measure / Classifier Multivar. Relevance
Feedback

Focus / contributions

MASS [43, 59] Provide query directly None ED No No Speed
Qetch [42] Query by sketch Trend Own local distortion + shape error No No Query by sketch
STSS [28] Provide query directly Value and trend Match/unmatch regex pattern No No Semantic shape description
ShapeSearch [55] Query-by-sketch / natural

lang. / regex
Position, trend and
dedicated operators

Scoring system defined on the
representation

No No Semantic shape description

PEAX [36] Query-by-example Conv. autoencoder Random Forest No Yes Accuracy repr., adapt. similarity
Zenvisage++ [54] Query-by-sketch None ED / DTW / Segmentation / MVIP No No Query-by-sketch
PSEUDo Query-by-example LSH ED / DTW Yes Yes Speed, adaptive similarity

Table 3. Comparison of recent VQSs: PSEUDo mainly focuses on efficient and interpretable pattern search in high-dimensional time series with a
use-case-dependent similarity notion.

7 DISCUSSION AND LIMITATIONS

PSEUDo goes beyond State-of-the-Art interactive MTS analysis by in-
corporating three aspects to make MTS data exploration more tractable
for real-world applications. First, it implements an adaptive classifica-
tion making it a user-centric Visual Analytics approach, in contrast to
static deep learning-based one-shot methods. Second, our method uti-
lizes one of the most scalable and efficient data processing techniques
ever invented: hashing-based algorithms. Third, the implemented con-
cept of “buckets” is easy to understand, allowing for a fast adaption of
PSEUDo in less ML-savvy application environments. However, during
the project, we came across conceptual, design, and implementation
challenges, that we would like to discuss here.

On the conceptual side, we found that a thorough task taxonomy
for MTS analysis is missing. We can map PSEUDo’s high-level tasks
into Brehmer and Munzner’s typology [10], e.g., our tool implements
browse, explore, locate, and lookup tasks. However, we did not
focus on MTS tasks like finding patterns with significant cross-track
time shifts or tasks that assess the invariance properties of specific pat-
terns as these tasks are conceptually on a different level of abstraction.

We invested much effort in the scalable and fast search backend
but did not focus much on the frontend. Our rather simplistic use of
standard visualizations and the implemented query-by-example sys-
tem, though work flawlessly and effortlessly, demonstrate this aspect
distinctively. We admit that the visualization does not scale to very
high-dimensional data. We are considering reactive switching between
line charts, horizon diagrams [24], and color-encoded pixels [1]. We
are also considering distorting the time series in the plot. For instance,
using different heights for tracks with varied importance and distorting
the time to compress unimportant time regions. In the future, we plan
to extend our Visual Analytics contributions in two directions: First, we
will tackle query-definition challenges, like How can users specify a)
multi-track queries or b) queries with a temporal relationship between
them?, with new query definition panels and plan to apply interactive
augmentation, like Shadow Draw [53], to help with this process.

A limitation within PSEUDo is that we model MTS data as numer-
ical vectors with a fixed temporal resolution and assume the tracks
in the target patterns are synchronized. However, we can envision
more complex application scenarios, such as in crime analysis, where
MTS tracks are a) not synchronized and b) contain categorical or even
complex data types, such as surveillance webcam images.

Another interesting challenge for VA is tracking biases and conver-
gence in exploration processes. Currently, we include negative and
indecisive labels to promote target class separation, which inevitably
adds to a potential confirmation bias in every iteration. We could, how-
ever, also regard every new positive label, which is distinct from the
current set of positive labeled items, as a novel exploration thread or
fork. This enables quality metrics to quantify task change(s), i.e., a
strong difference between positive labels could signal a transition from
exploitation to exploration. We are currently also examining feedback
beyond binary labels, such as a similarity score and feedback regarding
the shape, size, and position, e.g., allowing tuning the start and end
time of the samples.

8 CONCLUSION

This work has proposed PSEUDo, an efficient, adaptive, and inter-
pretable tool for visual pattern retrieval in multivariate time series
based on LSH and relevance feedback. We found PSEUDo impres-
sively efficient for very high-dimensional time series. It works well
in use cases where initial labels are meager and the promptness of the
result counts. These properties make it particularly useful for user
interaction in VQSs. Furthermore, we found that PSEUDo improves
results with an also efficient relevance feedback mechanism based on
feature selection. This property helps capture subjective task-dependent
similarity and hints for further domain-specific analysis. In the future,
we expect an increasing collaboration between hashing algorithms and
machine learning due to the explosion of data size, e.g., for massive
video processing. As future work for PSEUDo, we are especially inter-
ested in visualizing high-dimensional time series with different track
importance and examining more possibilities for relevance feedback.
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A DATASETS

We use six datasets with different characteristics to evaluate PSEUDo’s performance. Deep Valve, EEG Eye State, Filling Prediction, and Variable
Displacement datasets have ground truth labels and are therefore used for “open-loop” accuracy benchmark, where PSEUDo’s relevance feedback
is deactivated. Among the four datasets, the EEG eye state dataset are high-dimensional with 14 tracks. Hence, we use it to demonstrate the
accuracy improvement with relevance feedback, which is based on feature selction. All the above four datasets are used for speed benchmark.
However, we would like to evaluate PSEUDo’s scalability with respect to the number of tracks more thoroughly with even higher dimensions.
Thus, we included the unlabeled EEG Schizophrenia dataset with 74 tracks, because the speed test does not require labels. However, because it
does not have ground truth labels, we did not use it for the accuracy benchmark, only for speed/scalability benchmark. The Intelliekon dataset
used in the expert study is from the domain expert.

Table 4 lists their meta-information. We rank the level of difficulty of the labelled datasets with four attributes, shown in Table 5 and Fig. 1.
The ranking scales are described in Table 6.

Dataset Files Tracks Length Sampling rate Volume Horizontal scaling Domain

Deep Valve 1 1 100000 100 Hz 1.6 MB 0.5-4 s automotive
EEG Eye State 1 15 14980 128 Hz 1.7 MB 0.4-20 s medicine
EEG Schizophrenia 1 74 900095 N/A 527 MB N/A medicine
Intelliekon 1 4 25728 1 /h 806 kB N/A energy
Filling Prediction 1 1 61226 10 Hz 959 kB 5-8 s automotive
Variable Displacement 8 2 9119-108457 2000 Hz 216 - 2544 kB 0.05-0.12 s automotive

Table 4. Metadata of the Datasets

Dataset Dimension Length Pattern scaling Fuzziness

Deep Valve 0 2 4 2
EEG Eye State 3 2 5 3
Filling Prediction 0 2 2 1
Variable Displacement 2 2 3 2

Table 5. Important Attribute Ranking (0-5) of the Datasets

Scale Dimension Length Pattern scaling Fuzziness

0 1 (univariate) ¡ 1 hundred almost no scaling almost the same
1 2 - 3 ¡ 1 thousand ¡ x1.5 slightly deformed
2 4 - 9 ¡ 1 million ¡ x2 large deformation but resemblance readily perceptible
3 10 - 30 ¡ 1 billion ¡ x5 resemblance perceptible after some observation
4 31 - 99 ¡ 1 trillion ¡ x10 resemblance barely perceptible
5 100 and more ¿= 1 trillion ¿= x10 visually no resemblance

Table 6. Ranking Explanation

The Deep Valve dataset measures the current in a solenoid valve. The query is a complete operating cycle of the valve. The length of the
operating cycle varies greatly. The pattern features a high pulse at the beginning and the pattern is horizontally significantly scaled.

EEG stands for electroencephalogram and measures brain waves with sensors mounted around the head. The EEG Eye State dataset
comes from from one continuous EEG measurement with the Emotiv EEG Neuroheadset. During measurement, participants’ eye state
(closed or open) was detected via a camera. Each video frame is labelled as ground truth labels for the EEG measurement. Please refer to
https://archive.ics.uci.edu/ml/datasets/EEG+Eye+State for more information. The pattern is very fuzzy and horizontally extremely
scaled in the dataset.

The EEG Schizophrenia dataset contains EEG measurement of 81 participants with or without Schizophrenia. Though not the most high-
dimensional dataset in our application (measurements from engine control unit have typically more than 10,000 tracks), it is open and has 70
signal tracks, enough for the scalability benchmark. We have used the measurement of the 21st participant. Due to the memory issue, we have
only used the first 10,000 time steps. The dataset has no labels for pattern retrieval, however, it has dozens of tracks to showcase PSEUDo’s
scalability for high-dimensional time series. Details of the dataset usuage can be found in Appendix B. For more information about the dataset
itself, please refer to https://www.kaggle.com/broach/button-tone-sz.

The Filling Prediction dataset (proprietary dataset cannot be published) records the relative air charge predicted by the engine control unit in a
test auto. The query corresponds to an event interested by the calibration engineer. The query features abrupt change near the boundaries of the
pattern. The major part in between remains stationary.

The Variable Displacement dataset (proprietary dataset cannot be published) captures the smoothness during the engine’s operation in a test
auto. The first track is the rotational speed and the the second the rotational acceleration. During displacement variation, the rotational speed
vibrates with large amplitude, causing NVH problems. Our engineers tries to address the problem. The query corresponds to the transition from
half-engine operation to full-engine operation. The datasets features vibrating patterns.

The Intelliekon dataset (proprietary dataset cannot be published) collected from a field study between 2009 and 2010 on smart metering within
the German research project Intelliekon. 2091 households from Linz (Austria) and eight German municipalities located in five federal German
states are picked up to collect hourly energy consumption at least 12 months. Since this dataset is only used for the usability and usefulness
validation in the expert study, we only randomly picked up two households as example. The smart meter data are decomposed into long-term
trend, seasonal trend and residuals based on Bayesian Structural Time Series model, which can yield a deeper insight on the user behaviors of
energy consumption from the economical perspective. Apart from the above three tracks, there is one more time track in the dataset. In terms of
the length of queries, they represent daily user behaviors(24), weekly user behaviors(168) or monthly user behaviors(720) respectively.

https://archive.ics.uci.edu/ml/datasets/EEG+Eye+State
https://www.kaggle.com/broach/button-tone-sz
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B EXPERIMENT SETUP

B.1 Hardware and Operating System
We conduct all experiments locally on the same laptop HP EliteBook 850 G5 with

• Processor: Intel® Core™ i7-8650U CPU @ 1.90GHz 2.11GHz

• Memory: 16GB

• Storage: 1TB HDD

• Operating system: 64-bit Windows 10 Enterprise

We have disabled all parallel computing and GPU acceleration, e.g. for MASS.

B.2 Programming Languages and Libraries
• PSEUDo (https://git.science.uu.nl/vig/sublinear-algorithms-for-va/pseudo)

– Python

– C++

– Angular (https://angular.io/)

– Flask (https://flask.palletsprojects.com/en/1.1.x/)

– plotly (https://plotly.com)

– ZingChart (https://www.zingchart.com/)

• Dynamic Time Warping (DTW): from ucrdtw ( ucrdtw.ucrdtw, https://github.com/klon/ucrdtw), only works for univariate time
series

• Dynamic Time Warping Dependent (DTWD): from tslearn (tslearn.metrics.dtw https://github.com/tslearn-team/tslearn)

• Dynamic Time Warping Barycenter Averaging (DBA): from https://github.com/fpetitjean/DBA

• Mueen’s Algorithm for Similarity Search (MASS): from https://github.com/matrix-profile-foundation/mass-ts. We have
used mass ts.mass2(ts, query) to calculate the distance profile.

• Symbolic Aggregate approXimation (SAX): also from tslearn (tslearn.piecewise.SymbolicAggregateApproximation)

B.3 Parameter Setting
LSH has nearly 20 parameters to set. The majority of them are derived and three are given by the user. We inherit their setting from the
experiments in [60].

• Approximation ratio c = 1.3

• False negative rate δ = 0.05

• Hash bucket size ω = 0.75r

SAX uses PAA as a necessary preprocessing step, which reduces data volume and accelerates the algorithm. To ensure a fair comparison, we
apply PAA with the same resolution for all the other methods. After some trials, we set this aggregation size along the time axis to 20 empirically.
This parameter influences both accuracy and speed significantly. Moreover, SAX discretizes the values into a certain number of bins and each bin
corresponds to a symbol. This alphabet size for a track is named cardinality. According to the experiments in [38], 10 is a good estimation. This
parameter is unique for SAX. It mainly influences the accuracy. Theoretically, speed should not be affected significantly.

Besides step-wise classification metrics accuracy, balanced accuracy, precision, recall and F1-score, we borrow the metric mAP from object
detection in computer vision in favor of a segment-wise perspective. The metric requires a threshold for IoU between a prediction and the closest
ground truth label to judge the prediction as true positive. The choice of the threshold is not standardised. In computer vision, this threshold is
typically at least 50%. For instance, PASCAL challenge chooses 50% and COCO challenge a range from 50% to 95% with 5% increment. We
find it overly demanding in case of time series and used 30% along with 50%. The two metrics are denoted mAP30 and mAP50 respectively.
Note that mAP does not require a confidence/distance threshold. For other metrics, the confidence/distance threshold is tuned to achieve the best
F1-score.

Due to the memory issue, we have not used the whole length (more than 900,000 time steps) of the EEG Schizophrenia dataset, but only the
first 10,000 time steps. However, this should not harm the validity of the scalability measurement, because all methods are based on the sliding
window technique, which scales linearly with the data length. Furthermore, we have chosen the first 100 time steps as the query. Since the exact
choice of the query does not affect speed, as long as it retains its length and dimensions. We omit the experiment speed vs. query length, because
it is clear from the asymptotic analysis that all methods scale linearly with query length except DTW, whose standard version is quadratic.

https://git.science.uu.nl/vig/sublinear-algorithms-for-va/pseudo
https://angular.io/
https://flask.palletsprojects.com/en/1.1.x/
https://plotly.com
https://www.zingchart.com/
https://github.com/klon/ucrdtw
https://github.com/tslearn-team/tslearn
https://github.com/fpetitjean/DBA
https://github.com/matrix-profile-foundation/mass-ts


C SCALABILITY ANALYSIS AND EXPERIMENTS

The majority of visual query systems fulfill the function of pattern search by combining sliding windows and a similarity measure. The latter
differentiates the VQS in terms of accuray and speed. Table 7 lists the complexity of common similarity measures where d denotes the dimension
or number of tracks, n the time series length of number or windows after preprocessing with sliding windows, and q the query length. LSH
removes d in the complexity.

Note that SAX is a representation of time series originally. However, it comes with a distance measure [38], making it a full-fledged similarity
measure.

Similarity Measure Complexity

Lp-norm including Euclidean Distance (ED) O(dnq)
Cosine similarity / correlation O(dnq)
Dynamic Time Warping (DTW) O(dnq2)
Symbolic Aggregate approXimation (SAX) O(dnq)

Table 7. Complexity of common similarity measures, where d denotes the dimension or number of tracks, n the time series length or number of
windows after preprocessing with sliding windows, and q the query length.

While LSH reduces dimensionality and merges all tracks into one, enabling subsequent sublinear similarity search, it also prunes the candidate
windows along the time axis. It can be regarded as a preprocessing step, which can be combined with all the mentioned similarity measures. In
our experiment, we have chosen DTW, which should be one of most complex similarity measures.

We conducted all experiment on the high-dimensional EEG Schizophrenia dataset, because it contains many tracks. The result is shown in
Table 8 and Fig. 2

Dimension Correlation DTW ED (MASS) LSH (PSEUDo) SAX

1 0.788 ± 0.351 0.490 ± 0.007 0.153 ± 0.006 0.264 ± 0.005 0.217 ± 0.025
5 2.863 ± 0.368 1.753 ± 0.046 0.257 ± 0.004 0.279 ± 0.004 0.547 ± 0.025
10 5.237 ± 0.125 3.337 ± 0.116 0.358 ± 0.006 0.289 ± 0.010 0.957 ± 0.025
20 10.197 ± 0.337 6.193 ± 0.116 0.575 ± 0.013 0.315 ± 0.009 1.814 ± 0.068
30 15.467 ± 0.246 9.219 ± 0.164 0.775 ± 0.002 0.324 ± 0.009 2.581 ± 0.070
40 20.552 ± 0.983 12.663 ± 0.237 1.008 ± 0.062 0.350 ± 0.011 3.451 ± 0.102
50 26.558 ± 2.081 15.479 ± 0.106 1.160 ± 0.005 0.378 ± 0.008 4.246 ± 0.112
60 30.007 ± 0.331 18.164 ± 0.233 1.436 ± 0.092 0.383 ± 0.014 4.956 ± 0.126
70 34.516 ± 0.458 21.684 ± 0.273 1.545 ± 0.028 0.427 ± 0.025 5.740 ± 0.110

Table 8. Scalability against dimensions
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Fig. 2. Scalability against dimensions

Even combined with one of the slowest similarity measures, LSH performs well and gradually surpasses the so far fastest similarity measure
MASS.

On a side note, DTW performs better als correlation in this experiment. According to Table 7, we expect higher elapsed time for DTW than
that for correlation eventually, if we increase the query length sufficiently.



D EVOLUTION OF ALL TRACK WEIGHTS
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Fig. 3. Evolution of all track weights: PSEUDo updates the LSH model by feature selection, attaching higher weights to more important tracks.

Electroencephalography (EEG) measures the electrical activity of neurons in the cerebral cortex with electrodes placed on the scalp of a patient
In EEG, the eye activities have a prominent impact on the data. The complete EEG Eye State dataset is plot on the left side. We have denoised the
original data with median filter to remove the point-wise anomalies. The gray areas are ground truth labels corresponding to the periods when the



subject’s eyes are closed. Accordingly, the white areas are periods when the subject’s eyes are open. The blue segment is chosen as the initial
query. We notice that the pattern (eye opened) is not equally revealing in all tracks. For instance, the target signal is more prominent the tracks
“AF3”, “F7”, “F8”, and “AF4”, whereas, it is less obvious in “T7”, “p7”, “O1”, and “O2”.

On the right side, we plot the weight evolution of all tracks in five feedback rounds. The relevance feedback is given by three agents simulating
user behavior. The green lines represent normal agent providing sensible user feedback. If a sample has 50% intersection over union with a
ground truth label, the agent will label it as correct and accept it, otherwise reject it. The other two agents form the control group, one of which
accepts all samples and the other rejects all.

We notice that the weights of the tracks that are more informative for the pattern increase, e.g. “AF3”, “F7”, “F8”, and “AF4”. Whereas, the
weights of the tracks where the target signal is fuzzier decrease, e.g. “T7”, “p7”, and “O1”.

This finding confirms PSEUDo’s feature selection effect and the way the relevance feedback mechanism works. This property is desired by our
calibration engineers because they want to find the tracks that are most related to the event (e.g. an anomaly) to help them with the subsequent
error analysis.



E THE IN-PERSON CASE STUDY PROTOCOL

We conducted an in-person case study to show PSEUDo’s usability in a real-world use case in the energy domain. The expert leads the business
unit of demand response and smart grids and has over 19 years experience with smart meter data. In an individual one-hour session, we first
introduced the PSEUDo’s functionality, discussed the primary use cases for smart meter data and provided a brief demonstration. We selected
one of brainstormed application scenarios to show how PSEUDo can help energy experts identify shifts of energy consumption behaviors for
households. Energy consumption behavior is the response to complex environments with many temporal scales. However, our expert currently
lacks a tool to identify the changes of energy consumption behaviors in high resolution. Instead, his team calculates the means of smart meter
data in specific time periods, which is inflexible and cannot discover the minor changes among inner components.

For his use case, we tested PSEUDo on a smart meter dataset collected from a field study between 2009 and 2010 within the German research
project Intelliekon [52]. For two of 1720 randomly picked households we decomposed the one-year hourly energy consumption into long-term
trend, seasonal, and residual components based on a Bayesian structural TS model. These three tracks are loaded as our MTS input. During
visual exploration with PSEUDo, the shifts of user behaviors can be identified by searching for characteristic patterns on various scales (monthly,
weekly, and daily).

During the interview, the expert operated PSEUDo. It helped the expert identifies the shifts of user behaviors and inspect the differences of
behaviors between user groups. Overall, PSEUDo was highly praised by the expert.

E.1 Chronological Overview of Operation Actions
In this section, we record the actions performed by the expert objectively, showing the complete workflow on a real-world use case.

The expert first wanted to find whether there are some days having the similar daily patterns with the last recording day for the Household 1.
This can be regarded as identifying shifts of daily user behaviors by the comparison.

1. The expert load the smart meter dataset.

2. After initialization, PSEUDo shows the first track by default. The expert chose all the useful tracks by clicking all the tracks (in this case
only three tracks) and clicking the Set button in the Tracks View.



3. The expert navigated mainly with the range slider as well as zoomed in and out to inspect the data.

4. The expert zoomed in a segment and planed to define it as the query. He used the upper input fields to fine tune the start and end time stamp.
At this stage, we admitted that the query was distorted by the scaling. We planned to implement query-by-example through marking without
distorting the query in the official release. The functions were kept minimum in the prototyping version.

5. He clicked “the Set as query” button. The screen dimmed showing that PSEUDo was creating a LSH model.



6. After a few seconds, the Samples Tab in the Feedback View was full of samples. The classifier Tag in the Results View showed similarity
distribution of the candidates in a histogram and the “average” shape of the samples in the bars of the histogram. The Query View displayed the
chosen query and the predictions were marked in the Dataset Overview. The expert proceeded by marking some samples as correct or wrong.

7. He clicked the Train button. The screen dimmed for a second showing the LSH was updating. After that, the result changed a bit. The
positive labels and negative labels were marked green and red respectively in the Dataset Overview, as also indicated by the green and red dots in
the range slider.



8. Then, he opened the Tables Tab. From the explanation at the beginning of the interview, the expert knew that this tab showed the “smaller”
classifiers working collectively in the whole classification algorithm. As explained in Section 3.2 Relevance Feedback §3 Classifier Relevance
Feedback, unitary similarity distribution means that the classifier has a hard time distinguishing similar samples from dissimilar ones, while
bi-modal distributions indicates that the classifier can probably separate the two well. The expert futher checked the “average” shape perceived by
the classifiers and chose two best from them.

9. He clicked the Train button and the result is updated immediately. Compared with the “average” shapes in the previous round, he found the
“average” shapes perceived by the updated classifiers more meaningful, because the lower two tracks, which seemed to convey more complex
information, were better recognized.



10. He check the Labeled data Tab in the Feedback View. Here, he can review the labels made by him.

11. He clicked the bins in the Similarity distribution in the Result View to inspect the overall similarity distribution. He noticed that “average”
shape of the samples in the tallest red bar deviated completely from the desired shape. The samples in the tallest green bar was slightly better, at
least concerning the upward trend in the first track, but already deviated much from the desired shape (in previous screenshot). This information
helped him choose the best bin as the threshold of the retrieval process. Subsequently, he could proceed with the located patterns in the Dataset
Overview with his domain specific analysis.



12. Just to test the function, he clicked the History Tab and chose to revert to States 1. After a few seconds, the findings in the initial search
was shown.

13. He then reverted to States 2 and finished the first experiment.



In the experiment, the expert noticed that after a time point, there were no more predictions if he set the threshold properly. In fact, there was a
treatment that leads to the transition of daily energy consumption behavior according to the domain knowledge of the expert. Then the experts
tried to search for similar patterns for weekly energy consumption behavior.

14. The expert reset the query length to 168 in the input field in the Dataset Overview, adjusted the position slightly through panning in the line
chart , and click the “Set as query” button.

The expert went through all the predictions and found that only predictions close to the query in time were exactly similar with the query,
indicating a slow transition of the weekly energy consumption behavior pattern. In the next steps, he started to search for monthly patterns.

15. The expert reset the query length to 720 and adjusted the position slightly. After that, he clicked the “Set as query” button.



The expert went through all the predicted patterns and noticed similar situation as the weekly patterns. Namely the predictions really close to
the query were indeed similar with the query, indicating a transition of monthly energy consumption behavior.

E.2 Post-study Interview
After the hands-on part, we interviewed the expert with prepared question in a think-aloud manner.

Q: Where do you see possible usage scenarios in the respective domain?
A: It looks quite interesting to analyze time series. I can image there are many applications for this tool, especially when we need to find some
specific patterns like the two use cases we talked before (identifying the shifts of user behaviors and quantifying the differences of behaviors
between user groups). With more data, I suppose it can identify how many persons in the households, outdoor temperature changes and other
household situation.
Q: Which feature do you consider most useful and why?
A: It depends on the use case. I think the query search function is the most useful one and certainly it is the main part of this tool. It is also very
useful to have a view of similarities among searched results to help pick up the thresholds of similarity because it can directly help us have a look
on the characteristics of the predictions.
Q: What features do you think are missing?
A: I would appreciate that there are some texts explaining the algorithm so that when we explain the results to our customers who have little
experience with data science, it is more direct. When we compare multiple households, if it can provide multiple groups of tracks, rather than we
combine them by ourselves, it would be perfect.
Q: Which tools and visualizations of the presented system do you think are dispensable?
A: No, the complexity is just OK and all the components are quite understandable. The data overview have a clear view of raw data and the
feedback part is also quite clear.
Q: What do you think the response time of this tool?
A: It depends. If there are thousands of households, it maybe a problem, since the length of one household is already over 19000. Currently, it is
still OK.
Q: What do you think the flexibility of the measure settings?
A: It looks quite good from my perspective. If 10 is full mark, I think it is 8 at least.
Q: What do you think the accuracy of the searched results?
A: From visualization, yep, it works. I can give it 9, if 10 is full mark.
Q: What do you think the interaction? Is it enough for your needs?
A: Yep, I like it.
Q: What do you think the understandable process of this tool?
A: It is improvable. In general, it is good but I prefer a self-explainable tool, rather than providing me a video as the guidance.
Q: Whether you think you can freely explore with the datasets?
A: Yep, I would say it is quite flexible and fits my needs.
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